基于超声尾波法的钢筋混凝土腐蚀监测研究

吕铎1,徐嘉豪1,胡宏伟1,易善昌2,王磊2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 264-270.

PDF(1564 KB)
PDF(1564 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 264-270.
论文

基于超声尾波法的钢筋混凝土腐蚀监测研究

  • 吕铎1,徐嘉豪1,胡宏伟1,易善昌2,王磊2
作者信息 +

Monitoring the corrosion of reinforced concrete using the ultrasonic coda wave method

  • LDuo1, XU Jiahao1, HU Hongwei1, YI Shanchang2, WANG Lei2
Author information +
文章历史 +

摘要

针对现有超声无损检测方法在钢筋混凝土(reinforced concrete, RC)腐蚀损伤评价方面存在的传播速度偏差问题,提出一种利用尾波干涉(coda wave interference, CWI)表征RC腐蚀情况的监测方法。在混凝土超声传播多重散射基础上,建立CWI腐蚀损伤评价指标。搭建快速电化学实验监测了RC在0%、1%、2%腐蚀率下的腐蚀过程,通过逐步CWI分析了相对速度变化"Δv" ⁄"v" 及去相关系数"K" _"d" 的变化规律,探究了换能器布置方式对尾波腐蚀监测敏感性的影响。研究结果表明:"Δv" ⁄"v" 随着腐蚀时间而逐渐减小,"K" _"d" 随着腐蚀时间而逐渐增大;CWI方法能够有效地监测RC结构腐蚀裂纹的扩展过程,并且具有较好的敏感性;换能器采用垂直、对侧和同侧三种不同布置方式均能检测出RC结构腐蚀开裂,垂直布置方式对RC腐蚀检测的敏感程度更高。

Abstract

Aiming at the propagation velocity deviation of existing ultrasonic nondestructive testing methods in corrosion damage evaluation of reinforced concrete (RC), a monitoring method using coda wave interferometry (CWI) to characterize RC corrosion was proposed. Based on multiple scattering of ultrasonic propagation of concrete, corrosion damage evaluation indexes of CWI were established. A rapid electrochemical experiment was set up to monitor the corrosion process of RC at 0%, 1% and 2% corrosion rates. The relative velocity change "Δv" ⁄"v" and the decorrelation coefficient "K" _"d" were analyzed by stepwise CWI, and the influence of transducer arrangement on the sensitivity of coda corrosion monitoring was explored. The results show that "Δv" ⁄"v" decreases with the corrosion time, while "K" _"d" increases with the corrosion time. The CWI method can effectively monitor the corrosion crack propagation process of RC structure and has good sensitivity. The corrosion cracking of RC structure can be detected by three different arrangements of the transducer: vertical, opposite and same side, and the vertical arrangement is more sensitive to RC corrosion detection.

关键词

超声检测 / 尾波干涉 / 钢筋混凝土 / 腐蚀 / 多重散射

Key words

ultrasonic testing (UT) / coda wave interference (CWI) / reinforced concrete (RC) / corrosion / multiple scattering

引用本文

导出引用
吕铎1,徐嘉豪1,胡宏伟1,易善昌2,王磊2. 基于超声尾波法的钢筋混凝土腐蚀监测研究[J]. 振动与冲击, 2024, 43(2): 264-270
L Duo1, XU Jiahao1, HU Hongwei1, YI Shanchang2, WANG Lei2. Monitoring the corrosion of reinforced concrete using the ultrasonic coda wave method[J]. Journal of Vibration and Shock, 2024, 43(2): 264-270

参考文献

[1] Hu J Y, Zhang S S, Chen E,et al. A review on corrosion detection and protection of existing reinforced concrete (RC) structures[J]. Construction and Building Materials, 2022, 325: 126718. [2] 钱霞,蒋林华,金鸣. 混凝土腐蚀监测用参比电极制作及电化学性能研究[J]. 材料导报,2016,30(04):111-114+120. QIAN Xia, JIANG Lin-hua, JIN Ming. Fabrication and electrochemical studies on the reference electrode for corrosion monitoring in reinforced concrete[J]. Materials Reports, 2016, 30(04):111-114+120. [3] Chung L, Kim J H J, Yi S T. Bond strength prediction for reinforced concrete members with highly corroded reinforcing bars[J]. Cement and concrete composites, 2008, 30(7): 603-611. [4] Cairns J, Du Y, Law D. Structural performance of corrosion-damaged concrete beams[J]. Magazine of Concrete Research, 2008, 60(5): 359-370. [5] Giordano L, Mancini G, Tondolo F. Reinforced concrete members subjected to cyclic tension and corrosion[J]. Journal of Advanced Concrete Technology, 2011, 9(3): 277-285. [6] Darmawan M S. Pitting corrosion model for reinforced concrete structures in a chloride environment[J]. Magazine of Concrete Research, 2010, 62(2): 91-101. [7] 周敉,张洋,姜永存,等. 氯离子侵蚀后桥墩的抗震性能及损伤指标研究[J]. 振动与冲击,2022,41(15):263-272. ZHOU Mi, ZHANG Yang, JIANG Yong-cun, et al. Aseismic performance and damage index of pier after chloride ion erosion [J]. Journal of Vibration and Shock, 2022, 41(15):263-272. [8] Alonso C, Andrade C, Rodriguez J, et al. Factors controlling cracking of concrete affected by reinforcement corrosion[J]. Materials and structures, 1998, 31(7): 435-441. [9] Wang H L, Dai J G, Sun X Y, et al. Characteristics of concrete cracks and their influence on chloride penetration[J]. Construction and Building Materials, 2016, 107: 216-225. [10] Chen E, Leung C K Y. Mechanical aspects of simulating crack propagation in concrete under steel corrosion[J]. Construction and building materials, 2018, 191: 165-175. [11] 朱珊,周文杰,李晓莹. 混凝土健康监测技术综述[J]. 建筑结构,2022,52(S1):2248-2252. ZHU Shan, ZHOU Wen-jie, LI Xiao-ying. Review of concrete health monitoring technology [J]. Building Structure, 2022, 52(S1):2248-2252. [12] Antonaci P , Bruno C L E , Scalerandi M , et al. Effects of corrosion on linear and nonlinear elastic properties of reinforced concrete[J]. Cement & Concrete Research, 2013, 51:96-103. [13] Jiang T, Kong Q, Zhong P ,et al. Monitoring of Corrosion-Induced Degradation in Prestressed Concrete Structure Using Embedded Piezoceramic-Based Transducers[J]. IEEE Sensors Journal, 2017, 17(18):5823-5830. [14] Xu Y, Jin R. Measurement of reinforcement corrosion in concrete adopting ultrasonic tests and artificial neural network[J]. Construction and Building Materials, 2018, 177: 125-133. [15] Snieder R, Grêt A, Douma H, et al. Coda wave interferometry for estimating nonlinear behavior in seismic velocity[J]. Science, 2002, 295(5563): 2253-2255. [16] Larose E, Hall S. Monitoring stress related velocity variation in concrete with a 2× 10− 5 relative resolution using diffuse ultrasound[J]. The Journal of the Acoustical Society of America, 2009, 125(4): 1853-1856. [17] Schurr D P, Kim J Y, Sabra K G, et al. Damage detection in concrete using coda wave interferometry[J]. Ndt & E International, 2011, 44(8): 728-735. [18] Niederleithinger E, Wang X, Herbrand M, et al. Processing ultrasonic data by coda wave interferometry to monitor load tests of concrete beams[J]. Sensors, 2018, 18(6): 1971. [19] Hu H, Li D, Wang L, et al. An improved ultrasonic coda wave method for concrete behavior monitoring under various loading conditions[J]. Ultrasonics, 2021, 116: 106498. [20] Zhan H, Jiang H, Liang Z, et al. Nondestructive In Situ Imaging of Preexisting Cracks in a Concrete Bridge Using Ultrasonic Coda Wave[J]. Journal of Structural Engineering, 2023, 149(1): 04022215. [21] Chen D, Huo L, Song G. High resolution bolt pre-load looseness monitoring using coda wave interferometry[J]. Structural Health Monitoring, 2022, 21(5): 1959-1972. [22] Chen D, Shen Z, Fu R, et al. Coda wave interferometry-based very early stage bolt looseness monitoring using a single piezoceramic transducer[J]. Smart Materials and Structures, 2022, 31(3): 035030. [23] Farin M, Moulin E, Chehami L, et al. Monitoring saltwater corrosion of steel using ultrasonic coda wave interferometry with temperature control[J]. Ultrasonics, 2022, 124: 106753. [24] 顾兴宇,李树伟,董侨,等. 沥青混凝土超声波检测的衰减特征与影响因素研究[J]. 中国公路学报,2020,33(10):316-326. GU Xing-yu, LI Shu-wei, DONG Qiao, et al. Attenuation characteristics and influencing factors of ultrasonic testing of asphalt concrete [J]. China Journal of Highway and Transport, 2020, 33(10):316-326. [25] Lobkis O I, Weaver R L. Coda-wave interferometry in finite solids: Recovery of P-to-S conversion rates in an elastodynamic billiard[J]. Physical review letters, 2003, 90(25): 254302. [26] Planès T, Larose E. A review of ultrasonic Coda Wave Interferometry in concrete[J]. Cement and Concrete Research, 2013, 53: 248-255. [27] Thery R, Guillemot A, Abraham O, et al. Tracking fluids in multiple scattering and highly porous materials: toward applications in non-destructive testing and seismic monitoring[J]. Ultrasonics, 2020, 102: 106019. [28] Bassil A, Wang X, Chapeleau X, et al. Distributed fiber optics sensing and coda wave interferometry techniques for damage monitoring in concrete structures[J]. Sensors, 2019, 19(2): 356. [29] Wang X, Chakraborty J, Bassil A, et al. Detection of multiple cracks in four-point bending tests using the coda wave interferometry method[J]. Sensors, 2020, 20(7): 1986. [30] 宋世德,张作才,王晓娜. 光纤布拉格光栅水下钢筋腐蚀传感器[J]. 电子测量与仪器学报,2017,31(07):1002-1008. SONG Shi-de, ZHANG Zuo-cai, WANG Xiao-na. Optical fiber grating sensor for monitoring corrosion of reinforcing steel under water [J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(07):1002-1008. [31] 张浩,李俊杰,康飞. 基于压电智能骨料的混凝土梁裂缝损伤监测研究[J]. 振动与冲击,2021,40(21):215-222. ZHANG Hao, LI Jun-jie, KANG Fei. Crack damage monitoring of concrete beams based on piezoelectric intelligent aggregate [J]. Journal of Vibration and Shock, 2021, 40(21):215-222. [32] El Maaddawy T A, Soudki K A. Effectiveness of impressed current technique to simulate corrosion of steel reinforcement in concrete[J]. Journal of materials in civil engineering, 2003, 15(1): 41-47.

PDF(1564 KB)

286

Accesses

0

Citation

Detail

段落导航
相关文章

/