悬浮隧道支撑锚索在管体运动状态下的动频率与湿模态

朱灿,刘炎,易壮鹏

振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 271-279.

PDF(2502 KB)
PDF(2502 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 271-279.
论文

悬浮隧道支撑锚索在管体运动状态下的动频率与湿模态

  • 朱灿,刘炎,易壮鹏
作者信息 +

Dynamic frequency and wet mode of the supporting cables of a submerged floating tunnel in tube motion state

  • ZHU Can, LIU Yan, YI Zhuangpeng
Author information +
文章历史 +

摘要

悬浮隧道(submerged floating tunnel,SFT)是一种潜力巨大的水下交通结构,其支撑锚索频率、模态的精确获取对识别结构动力性能至关重要。本文提出了一种管体运动状态下求解锚索“动频率”和“湿模态”的新颖方法,将锚索等效为梁或弦建立了四类考虑锚索抗弯刚度、湿重等因素的力学模型。在对运动悬浮隧道结构进行拟静态处理,及通过静平衡时锚索顶张力与该索支撑范围内净浮力相等的原则确定结构基本参数的前提下,研究了管体竖向周期运动过程中锚索动频率与湿模态的分布规律。获取了锚索动频率带及其上限、下限与管体浮重比、锚索倾角、竖向高度及管体运动幅值之间的对应关系与参数敏感区间,得到了锚索湿模态对湿重展向效应、竖向高度等因素的敏感程度,可为进一步深入研究锚索涡振频率锁定、参数振动提供新的处理思路。

Abstract

The submerged floating tunnel (SFT) is a kind of underwater traffic structure with great potential. The accurate acquisition of the frequency and mode of its supporting cables is crucial to identify the dynamic performance of this structure. In this paper, a novel method is proposed to obtain the "dynamic frequency" and "wet mode" of the supporting cables under the tube motion. Four types of mechanical models are established by equating the cable as a beam or string, taking into accounts the bending stiffness, wet-weight and other factors of the cables. On the premise of quasi-static treatment of the moving SFT and determination of the basic parameters of the structure by the principle that the top tension of the supporting cable is equal to the net buoyancy within the support range of the cable during static equilibrium, the distribution law of the dynamic frequency and wet mode of the cable during the vertical periodic motion of tube is studied. The corresponding relationships, as well as the parameter sensitive interval, between the dynamic frequency band of the cable and its upper/lower limits and the tube’s buoyancy weight ratio (BWR), the cable’s inclination angle, the cable’s vertical height and the amplitude of the tube motion are determined. The sensitivities of the wet mode to the span effect of wet-weight, the vertical height and other factors are obtained. This method provides a new treatment idea for further in-depth research on the frequency locking of the vortex-induced vibration and parametric vibration for the cable of SFT.

关键词

悬浮隧道 / 支撑锚索 / 管体运动 / 动频率 / 湿模态

引用本文

导出引用
朱灿,刘炎,易壮鹏. 悬浮隧道支撑锚索在管体运动状态下的动频率与湿模态[J]. 振动与冲击, 2024, 43(2): 271-279
ZHU Can, LIU Yan, YI Zhuangpeng. Dynamic frequency and wet mode of the supporting cables of a submerged floating tunnel in tube motion state[J]. Journal of Vibration and Shock, 2024, 43(2): 271-279

参考文献

[1] 项贻强, 陈政阳, 杨赢.悬浮隧道动力响应分析方法及模拟的研究进展[J]. 中国公路学报, 2017, 30(1): 69-76. XIANG Yiqiang, CHEN Zhengyang, YANG Ying. Research development of method and simulation for analyzing dynamic response of submerged floating tunnel[J]. China Journal of Highway and Transport, 2017, 30(1): 69-76. [2] 丁浩, 程亮, 李科. 悬浮隧道结构动力响应研究进展与展望[J]. 隧道建设(中英文), 2019, 39(6): 901-912. DING Hao, CHENG Liang, LI Ke. Research progress and prospect on dynamic response of STF structures[J]. Tunnel Construction, 2019, 39(6): 901-912. [3] Xie J M, Chen J Y. Dynamic response analysis of submerged floating tunnel - canyon water system under earthquakes[J]. Applied Mathematical Modelling, 2021, 94(10): 757-779. [4] 罗刚, 潘少康,周晓军,等.水下非接触爆炸冲击作用下悬浮隧道动力响应[J].中国公路学报, 2018,31(6):244-253. LUO Gang, PAN Shaokang, ZHOU Xiaojun, et al. Dynamic response of a submerged floating tunnel during non-contact underwater explosions [J]. China Journal of Highway and Transport, 2018, 31(6): 244-253. [5] Hartlen R T, Currie I G. Lift-oscillator model of vortex-induced vibration[J]. Engineering Mechanics, 1970, 96(5), 577-591. [6] Sun S N, Su Z B, Feng Y F, et al. Parametric vibration analysis of submerged floating tunnel tension legs [J], China Ocean Engineering, 2020, 34(1): 131-136. [7] 葛斐, 惠磊, 洪友士.水中悬浮隧道锚索的非线性涡激振动研究[J]. 中国公路学报, 2007, 20(6): 85-89. GE Fei, HUI Lei, HONG Youshi. Research on nonlinear vortex-induced vibrations of submerged floating tunnel tethers [J]. China Journal of Highway and Transport, 2007, 20(6): 85-89. [8] Srinil N. Multi-mode interactions in vortex-induced vibrations of flexible curved/straight structures with geometric nonlinearities[J]. Journal of Fluids and Structures, 2010, 26(7-8), 1098-1122. [9] Cantero D, Rønnquist A, Naess A. Tension during parametric excitation in submerged vertical taut tethers[J]. Applied Ocean Research, 2017, 65: 279-289. [10] 邵卫东, 唐友刚, 樊娟娟, 等. 考虑浮体升沉及张紧环运动深海立管固有振动特性研究[J]. 海洋工程, 2012, 30(2): 8-13. SHAO Weidong, TANG Yougang, FAN Juanjuan, et al. Study of natural vibration characteristics of deep-water riser considering heave motion of platform and tension-ring’s motion [J]. The Ocean Engineering, 2012, 30(2): 8-13. [11] Chen L, Sun L M. Steady-state analysis of cable with nonlinear damper via harmonic balance method for maximizing damping[J]. Journal of Structural Engineering, 2017, 143(2): 04016172. [12] 闫宏生, 罗钰淇, 余建星. 海流作用下悬浮隧道缆索的运动响应[J]. 船舶力学, 2017, 21(11): 1356-1364. YAN Hongsheng, LUO Yuqi, YU Jianxing. Dynamics response of cables for SFT under current effect [J]. Journal of Ship Mechanics, 2017, 21(11): 1356-1364. [13] Chen Z Y, Xiang Y Q, Lin H, et al. Coupled vibration analysis of submerged floating tunnel system in wave and current[J]. Applied Science, 2018, 8(8), 1311. [14] Lu W, Ge F, Wang L, et al. On the slack phenomena and snap force in tethers of submerged floating tunnels under wave conditions[J]. Marine Structures, 2011, 24(4): 358-376. [15] Wang L H, Zhao Y Y. Large amplitude motion mechanism and non-planar vibration character of stay cables subject to the support motions [J]. Journal of Sound and Vibration, 2009, 327(1-2): 121-133 [16] 张子祥, 王检耀, 王鸿东, 等.弹性约束充液管道的振动模态试验与预报研究[J]. 振动与冲击,2021,40(15):1-10. ZHANG Zixiang, WANG Jianyao, WANG Hongdong, et al. Vibration mode tests and prediction of liquid filled pipeline with elastic constraints [J]. Journal of Vibration and Shock, 2021, 40(15): 1-10. [17] 吴晨, 余建星, 余杨, 等. 张紧器系统对顶张式立管固有频率的影响研究[J]. 振动与冲击, 2020, 39(11): 209-216. WU Chen, YU Jianxing, YU Yang, et al. Influence analysis of tensioner system on natural frequency of top tensioned riser[J]. Journal of Vibration and Shock, 2020, 39(11): 209-216. [18] 张杰, 唐友刚. 深海立管固有振动特性的进一步分析[J]. 船舶力学, 2014, 18(1-2): 165-171. ZHANG Jie, TANG Yougang. Further analysis on natural vibration of deep-water risers[J].Journal of Ship Mechanics, 2014, 18(1-2): 165-171.

PDF(2502 KB)

345

Accesses

0

Citation

Detail

段落导航
相关文章

/