航行体出水过程空化结构演变与溃灭载荷特性研究

高山1,2,施瑶1,2,潘光1,2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 306-314.

PDF(2438 KB)
PDF(2438 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 306-314.
论文

航行体出水过程空化结构演变与溃灭载荷特性研究

  • 高山1,2,施瑶1,2,潘光1,2
作者信息 +

Evolution of cavitation structure and collapse load characteristics during underwater vehicle exiting-water process

  • GAO Shan1,2, SHI Yao1,2, PAN Guang1,2
Author information +
文章历史 +

摘要

高速航行体肩部附着空泡穿越自由液面过程中发生溃灭现象,将产生巨大的冲击载荷,严重影响航行体出水姿态和结构安全性。本文采用改进型分离涡模型,建立了水下发射非定常空化特性数值模拟方法。结果表明:航行体附着空泡出水过程自上而下发生溃灭现象,在溃灭末期收缩为较小的孤立空泡,溃灭产生的高速射流冲击结构表面;在出水过程中,水面附近的“反向旋转涡对”导致附着空泡发生了快速溃灭现象,以发卡涡为代表的壁面涡旋结构发展明显受到附着空泡的抑制;空泡溃灭末期的孤立泡产生了巨大的冲击压力峰值,对航行体结构安全性将造成巨大破坏。然而,初期航行体迎流侧空泡溃灭行为也会导致较大的压力峰值出现。

Abstract

During the process of high-speed vehicle exiting-water, its shoulder attached to cavitation across the free liquid surface collapse phenomenon, generating huge impact load, seriously affecting the vehicle exiting-water posture and structural safety. To investigate the evolution of the cavitation flow field details and the collapse load characteristics of the vehicle exiting-water process, this paper adopts the improved delayed detached eddy simulation model. The results show that: the collapse of the vehicle attached to the cavitation during exiting-water process occurs from top to bottom, and at the end of the collapse shrinks to a smaller isolated bubble, the collapse of the resulting high-speed jet impact on the surface of the structure. During the exiting-water process, the counter-rotating vortex pairs near the water surface led to the rapid collapse of the attached cavitation, and the development of the wall vortex structure represented by the hairpin vortex was obviously inhibited by the attached cavitation. The isolated bubble collapse generates a huge impact pressure peak, which causes great damage to the structural safety of the vehicle; However, the bubble collapse behavior on the face flow of the vehicle lead to the appearance of larger pressure peaks.

关键词

航行体 / 出水 / 空泡 / 溃灭载荷 / 发卡涡

Key words

vehicle / exiting-water / cavitation / collapse load / hairpin vortex

引用本文

导出引用
高山1,2,施瑶1,2,潘光1,2. 航行体出水过程空化结构演变与溃灭载荷特性研究[J]. 振动与冲击, 2024, 43(2): 306-314
GAO Shan1,2, SHI Yao1,2, PAN Guang1,2. Evolution of cavitation structure and collapse load characteristics during underwater vehicle exiting-water process[J]. Journal of Vibration and Shock, 2024, 43(2): 306-314

参考文献

[1] 杜特专, 王一伟, 黄晨光, 等. 航行体水下发射流固耦合效应分析[J]. 力学学报, 2017, 49(04): 782-792. DU Tezhuan, WANF Yiwei, HUANG Chenguang, et al. Study on coupling effects of underwater launched vehicle[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(04): 782-792. [2] 刘韵晴, 郭一梦, 黄彪, 等. 绕弹性水翼空化流激振动特性实验研究[J]. 空气动力学学报, 2022, 40(01): 41-48. LIU Yunqing, GUO Yyimeng, HUANG Biao, et al. Experimental investigations of cavitating flow induced vibration around a flexible hydrofoil[J]. Acta Aerodynamica Sinica, 2022, 40(01): 41-48. [3] 尤天庆, 张耐民, 魏海鹏, 等. 含气空泡出水过程数值模拟研究[J]. 振动与冲击, 2015, 34(18): 106-110. YOU Tianqing, ZHANG Naimin, WEI Haipeng, et al. Numerical simulation on water exit of air-involved cavity[J]. Journal of Vibration and Shock, 2015, 34(18): 106-110. [4] 季斌, 程怀玉, 黄彪, 等. 空化水动力学非定常特性研究进展及展望[J]. 力学进展, 2019, 49(00): 428-479. JI Bin, CHENG Huaiyu, HUANG Biao, et al. Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation[J]. Advances in Mechanics, 2019, 49: 201906. [5] 王一伟, 黄晨光. 高速航行体水下发射水动力学研究进展[J]. 力学进展, 2018, 48: 201805. WANG Yiwei, Huang Chenguang. Research progress on hydrodynamics of high-speed vehicles in the underwater launching process[J]. Advances in Mechanics, 2018, 48: 201805. [6] 王一伟, 黄晨光, 杜特专, 等. 航行体垂直出水载荷与空泡溃灭机理分析[J]. 力学学报, 2012, 44(01): 39-48. WANG Yiwei, HANG Chenguang, DU Tezhuan, et al. Mechanism Analysis about Cavitation collapse Load of Underwater Vehicles in a Vertical Launching Process[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 39-48. [7] 陈玮琪, 王宝寿, 颜开, 等. 物体垂直出入水的非定常空泡数学模型[J]. 应用数学和力学, 2013, 34:1130-1140. CHEN Weiqi, Wang Baoshou, Yan Kai, et al. 2013. Model of the unsteady vertical water-entry and water-exit cavities[J]. Applied Mathematics and Mechanics, 2013, 34: 1130-1140. [8] 施红辉, 胡俊辉, 周浩磊. 完全超空泡出水的实验研究及理论分析[J]. 空气动力学学报, 2014, 32: 544-550. SHI Honghui, Hu Junhui, Zhou Haolei. Experimental and theoretical analysis of water exit of a supercavity[J]. Acta Aerodynamica Sinica, 2014, 32: 544-550. [9] 权晓波, 李岩, 魏海鹏, 等. 航行体出水过程空泡溃灭特性研究[J]. 船舶力学, 2014, 32(4): 545-549. QUAN Xiaobo, Li Yan, Wei Haipeng, et al. Cavitation collapse characteristic research in the out-of-water progress of underwater vehicles [J]. Journal of Ship Mechanics, 2014, 32(4): 545-549. [10] Zhang G Y, YOU C, WEI H P, et al. Experimental study on the effects of brash ice on the water-exit dynamics of an underwater vehicle[J]. Applied Ocean Research, 2021, 117, 102948. [11] 魏英杰, 闵景新, 王聪, 等. 潜射导弹垂直发射过程空化特性研究[J]. 工程力学, 2009, 26(07): 251-256. WEI Yingjie, MIN Jingxin, WANG Cong, et al. Research on cavitation of vertical launch submarine missile[J]. Engineering-Mechanics, 2009, 26(07): 251-256. [12] 刘元清, 崔军. 海流对出水空泡演化过程影响机理数值研究[J]. 宇航总体技术, 2020, 4(03): 55-61. LIU Yuanqing, CUI Jun. Numerical Study on Influence of Cavity Development Induced by Sea Route during Water Exit [J]. Astronautical Systems Engineering Technology, 2020, 4(03): 55-61. [13] 李卓越, 杜鹏, 汪超, 等. 水下垂直发射出筒过程数值模拟研究[J]. 水动力学研究与进展A辑, 2021, 36(06): 781-787. LI Zhuoyue, DU Peng, WANG Chao, et al. Research on process of underwater vertical launch by numerical simulation [J]. Chinese Journal of Hydrodynamics, 2021, 36(06): 781-787. [14] 孔德才, 权晓波, 魏海鹏, 等. 锥柱航行体肩空泡界面效应对头锥面受力的影响研究 [J]. 水动力学研究与进展A辑, 2015, 30(02): 201-207. KONG Decai, QUAN Xiaobo, WEI Haipeng, et al. Influence of cavitation interface effect of cone-column vehicle on the forces of the cone [J]. Chinese Journal of Hydrodynamics, 2015, 30(02): 201-207. [15] 刘涛涛, 黄彪, 王国玉, 等. 垂直发射水下航行体的通气空化数值模拟研究[J]. 宇航总体技术, 2017, 1(04): 22-28. LIU Taotao, HUANG Biao, WANG Guoyu, et al. Numerical investigation of ventilated cavitating flows around a vertical underwater-launched projectile [J]. Astronautical Systems Engineering Technology, 2017, 1(04): 22-28. [16] 施瑶, 高山, 潘光. 双发回转体水下齐射流体动力特性数值仿真[J]. 水下无人系统学报, 2021, 29(05): 524-532. SHI Yao, GAO Shan, PAN Guang. Numerical simulation of hydrodynamic characteristics of double-revolving bodies in underwater salvo[J]. Journal of Unmanned Undersea Systems, 2021, 29(05): 524-532. [17] Gao S, Shi Y, Pan G, et al. The transient vortex structure in the wake of an axial-symmetric projectile launched underwater[J]. Physics of Fluids, 2022, 34,065109. [18] 高山, 施瑶, 潘光, 等. 水下发射航行体尾涡不稳定性分析[J]. 力学学报, 2022, 54(09): 2435-2445. GAO Shan, SHI Yao, PAN Guang, et al. Study on the wake vortex instability of the projectile launched underwater[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2435-2445. [19] Rouse H, McNown J S. Cavitation and pressure distribution, head forms at zero angle of yaw[R]. Bulletin: Studies in Engineering, State University of Iowa, 1948. [20] 高山, 施瑶, 潘光, 等. 水下发射航行体尾涡不稳定性分析[J]. 力学学报, 2022, 54(09): 2435-2445. GAO Shan, SHI Yao, PAN Guang, et al. Study on the wake vortex instability of the projectile launched underwater[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(09): 2435-2445. [21] Gao S, Shi Y, Pan G, et al. The transient vortex structure in the wake of an axial-symmetric projectile launched underwater[J]. Physics of Fluids, 2022, 34, 065109. [22] Gao S, Shi Y, Pan G, Quan, et al. A study on the flow interference characteristics of projectiles successively launched underwater [J]. International Journal of Multiphase Flow, 2022, 151, 104066.

PDF(2438 KB)

276

Accesses

0

Citation

Detail

段落导航
相关文章

/