考虑气动加热瞬态温度效应的复合材料壁板超音速热气动弹性LCO特性研究

刘雅婷 1,段静波 1,2,徐步青 1,2,高艺航 3,4

振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 315-322.

PDF(1753 KB)
PDF(1753 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 315-322.
论文

考虑气动加热瞬态温度效应的复合材料壁板超音速热气动弹性LCO特性研究

  • 刘雅婷 1,段静波 1,2,徐步青 1,2,高艺航 3,4
作者信息 +

Supersonic LCO responses of composite panels with consideration of transient aerodynamic heating effect

  • LIU Yating1, DUAN Jingbo1,2, XU Buqing1,2, GAO Yihang3,4
Author information +
文章历史 +

摘要

研究了考虑气动加热瞬态温度效应的复合材料壁板非线性热气动弹性行为。对于气动热模型,采用Eckert参考温度法计算气动加热热流,采用有限差分法求解包括壁板面内和贯穿厚度方向的二维瞬态温度场。对于气动弹性模型,采用Von Karman假设来描述复合材料壁板的大挠度变形,采用一阶活塞理论描述超音速气动力。在本文方法验证后,首先给出了考虑气动加热瞬态效应下的复合材料壁板瞬态温度响应和气动弹性极限环振荡(LCO)响应,并与壁板在稳态温度场中的气动弹性LCO响应进行对比分析。然后,重点讨论了考虑气动加热产生的瞬态温度效应下斜激波、来流动压、传热系数和初始干扰力等因素对复合材料壁板超音速热气动弹性LCO响应和瞬态温度场的影响规律。

Abstract

The nonlinear aerothermoelastic behavior of composite panels with transient aerodynamic heating temperature effect was investigated. For the aerothermal model, the aerodynamic heat flux was obtained using the Eckert reference temperature method and the two-dimensional transient temperature field including the in-plane and through-thickness directions of the panel was calculated by the finite difference method. For the aeroelastic model, the Von Karman assumption was used to describe the large-deflection deformation of the composite wall plate, and the first-order piston theory was used to calculate the supersonic aerodynamic force. After the verification of the proposed method, the transient temperature response and aeroelastic limit cycle oscillation (LCO) response of composite panels considering the transient effect of aerodynamic heating were first presented, and compared with the aeroelastic LCO response of the panel in the steady-state temperature field. Moreover, the influences of the shock wave, incoming flow pressure, heat transfer coefficient and initial interference force on the supersonic aerothermoelastic LCO response and transient temperature field of composite panels considering the transient aerodynamic heating temperature effect were discussed.

关键词

复合材料壁板 / 超音速颤振 / 瞬态热传导 / 气动加热

Key words

composite panel / supersonic flutter / transient heat conduction / aerodynamic heating

引用本文

导出引用
刘雅婷 1,段静波 1,2,徐步青 1,2,高艺航 3,4. 考虑气动加热瞬态温度效应的复合材料壁板超音速热气动弹性LCO特性研究[J]. 振动与冲击, 2024, 43(2): 315-322
LIU Yating1, DUAN Jingbo1,2, XU Buqing1,2, GAO Yihang3,4. Supersonic LCO responses of composite panels with consideration of transient aerodynamic heating effect[J]. Journal of Vibration and Shock, 2024, 43(2): 315-322

参考文献

[1] Niu J, Sui Y, Yu Q, et al. Comparative numerical study of aerodynamic heating and performance of transonic hyperloop pods with different noses [J]. Case Studies in Thermal Engineering, 2021, 22: 101701. [2] 吴志刚,惠俊鹏,杨超. 高超声速下翼面的热颤振工程分析[J]. 北京航空航天大学学报,2005,31(3):270-273. WU Zhi-gang, HUI Jun-peng, YANG Chao. Thermal flutter engineering analysis of airfoil under hypersonic velocity [J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(3): 270-273. [3] 陈浩宇,王彬文,宋巧治,等. 高超声速飞行器热颤振研现状与展望[J]. 航空工程进展,2022,13(1):19-27. CHEN Hao-yu, WANG Bin-wen, SONG Qiao-zhi, et al. Research status and prospect of thermal flutter of hypersonic vehicle [J]. Advances in Aeronautical Engineering, 2022, 13(1): 19-27. [4] Tran H, Farhat C. An Integrated Platform for the Simulation of Fluid-Structure-Thermal Interaction Problems [J]. 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2002. [5] Mcnamara J J, Friedmann P P, Powell K G, et al. Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow [J]. AIAA Journal, 2008, 46(10): 2591-2610. [6] Miller B, Crowell A R, McNamara J J. Loosely Coupled Time-Marching of Fluid-Thermal-Structural Interactions [J]. 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2013. [7] Huo L, Cheng X, Yang T. Aerothermoelastic response analysis for C/SiC panel of ceramic matrix composite shingle thermal protection system [J]. Advances in Space Research, 2015, 55(9): 2352-2371. [8] Chen F, Liu H, Zhang S. Time-adaptive loosely coupled analysis on fluid–thermal–structural behaviors of hypersonic wing structures under sustained aeroheating [J]. Aerospace Science & Technology, 2018, 78: 620-636. [9] Khalafi V, Shahverdi H, Noori S. Nonlinear Aerothermoelastic Analysis of Functionally Graded Rectangular Plates Subjected to Hypersonic Airflow Loadings [J]. Amirkabir University of Technology, 2018, 2(2): 217-232. [10] Ye K, Ye Z, Feng Z, et al. Numerical investigation on the aerothermoelastic deformation of the hypersonic wing [J]. Acta Astronautica, 2019, 160: 76-89. [11] Kamali S, Mavriplis D, Anderson E. Development and Validation of an Aerothermoelastic Analysis Capability [J]. AIAA Journal, 2021, 7: 1-15. [12] Yang C, Li G, Wan Z. Aerothermal-aeroelastic two-way coupling method for hypersonic curved panel flutter [J]. Science China: Technological Sciences, 2012, 55(3): 831-840. [13] Thornton E A, Dechaumphai P. Coupled flow, thermal, and structural analysis of aerodynamically heated panels [J]. Journal of Aircraft, 1988, 25(11): 1052-1059. [14] Li K, Zhang J, Wang Z. Aerothermoelastic flutter mechanisms of functionally graded curved panel in supersonic flows [J]. Journal of Aerospace Power, 2018, 33(8): 1905-1915. [15] Wan Z, Yi N, Li G, et al. Two-Way-Coupling Method for Rapid Aerothermoelastic Analyses of Hypersonic Wings [J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2018, 35(1): 135-145. [16] Ye K, Ye Z, Li C, et al. Effects of the aerothermoelastic deformation on the performance of the three-dimensional hypersonic inlet [J]. Aerospace Science and Technology, 2019, 84: 747-762. [17] Huang D, Friedmann P P. An aerothermoelastic analysis framework with reduced-order modeling applied to composite panels in hypersonic flows [J]. Journal of Fluids and Structures, 2020, 94: 102927. [18] Lin H, Cao D, Shao C, et al. Studies for aeroelastic characteristics and nonlinear response of FG-CNT reinforced composite panel considering the transient heat conduction [J]. Composite Structures, 2018, 188: 470-482. [19] 欧阳小穗,刘毅. 高速流场中变刚度复合材料层合板颤振分析[J]. 航空学报,2018,39(3):221539. OUYANG Xiao-sui, LIU Yi. Flutter analysis of Composite Laminates with Variable Stiffness in High Speed Flow Field [J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3): 221539. [20] 李晖,吕海宇,邹泽煜,等. 热环境下纤维增强复合材料圆柱壳非线性振动分析与验证[J]. 航空学报,2022,43(09):701-711. LI Hui, LV Hai-yu, ZOU Ze-yu, et al. Nonlinear Vibration Analysis and Verification of fiber reinforced Cylindrical Shell in Thermal Environment [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 701-711. [21] Eckert E R G. Engineering relations for friction and heat transfer to surfaces in high velocity flow [J]. Journal of the Aeronautical Sciences, 1955, 22(8): 585-587. [22] Culler A J, McNamara J J. Studies on Fluid-Thermal-Structural Coupling for Aerothermoelasticity in Hypersonic Flow [J]. AIAA Journal, 2010, 48(8): 1721-1738.

PDF(1753 KB)

267

Accesses

0

Citation

Detail

段落导航
相关文章

/