可变重心线路巡检机器人摆振分析及抑制

樊星,李小彭,彭健文,刘炳斐

振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 323-333.

PDF(2537 KB)
PDF(2537 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 323-333.
论文

可变重心线路巡检机器人摆振分析及抑制

  • 樊星,李小彭,彭健文,刘炳斐
作者信息 +

Pendulum vibration analysis and suppression of a power transmission line inspection robot with variable center of gravity

  • FAN Xing, LI Xiaopeng, PENG Jianwen, LIU Bingfei
Author information +
文章历史 +

摘要

针对野外输电线环境中巡检机器人(power transmission line inspection robot,PTLIR)受自然风影响出现的机身摆动问题,本文提出一种在机器人的可变重心箱体中加装摆式动力吸振器(dynamic vibration absorber ,DVA)的摆振抑制策略。首先描述了输电线系统与巡检机器人加装摆式动力吸振器的结构特点。基于Davenport风速谱与输电线系统的特点建立了风扰动模型。分析了机器人行走对输电线的影响,建立了简化后风扰动影响下机器人摆动的动力学模型,仿真了抑振前机器人在风扰动影响下的风振响应;基于拉格朗日方程建立了加装动力吸振器优化后的巡检机器人动力学模型,并完成了吸振器的参数设计。通过仿真不同风速下机器人的风振响应,验证所提出的振动抑制策略的有效性。最后,基于改进结构下的巡检机器人样机,开展了室内风扰动实验。结果表明:所提出的吸振器抑振策略可在一定程度上抑制机器人的机身摆动,提高工作稳定性。本文的研究过程对其他摆式结构设备的振动抑制具有一定的参考价值。

Abstract

Aiming at the pendulum vibration problem of power transmission line inspection robots (PTLIRs) in the field transmission line environment under the influence of natural wind, this paper proposes a pendulum vibration suppression strategy by installing a pendulum dynamic vibration absorber (DVA) in the variable center of gravity box of PTLIR. Firstly, the structural characteristics of the power transmission line system (PTL) and the PTLIR equipped with pendulum DVA are described. The wind disturbance model is established based on the Davenport wind velocity spectrum and the power transmission line system characteristics. The influence of the robot walking on the transmission line is analyzed, the simplified dynamic model of the robot swing under the influence of wind disturbance is established, and the response of the robot under the influence of wind disturbance before vibration suppression is given. Furthermore, based on the Lagrange equation, the dynamic model of the PTLIR with DVA is established, and the parameters of the DVA are designed. The effectiveness of the proposed vibration suppression strategy is verified by simulating the wind vibration response of the robot under different wind speeds. Finally, based on the prototype of the PTLIR with the improved structure, the indoor wind disturbance experiment is carried out. The results show that: the proposed vibration suppression strategy of DVA would be useful for restraining the robot's fuselage swing and improving the working stability. The research process of this paper is meaningful for the stability optimization of other pendulum structure equipment.

关键词

可变重心 / 输电线巡检机器人 / 风扰动 / 动力吸振器 / 振动控制

Key words

variable center of gravity / power transmission line inspection robot / dynamic vibration absorber / wind disturbance / vibration control

引用本文

导出引用
樊星,李小彭,彭健文,刘炳斐. 可变重心线路巡检机器人摆振分析及抑制[J]. 振动与冲击, 2024, 43(2): 323-333
FAN Xing, LI Xiaopeng, PENG Jianwen, LIU Bingfei. Pendulum vibration analysis and suppression of a power transmission line inspection robot with variable center of gravity[J]. Journal of Vibration and Shock, 2024, 43(2): 323-333

参考文献

[1] Yang Lei, Fan Junfeng, Liu Yanhong, et al. A Review on State-of-the-Art Power Line Inspection Techniques[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(12): 9350-9365. [2] Alhassan Ahmad Bala, Zhang Xiaodong, Shen Haiming, et al. Power transmission line inspection robots: A review, trends and challenges for future research [J]. International Journal of Electrical Power & Energy Systems, 2020, 118:105862. [3] Richard P L, Pouliot N, Morin F, et al. LineRanger: Analysis and Field Testing of an Innovative Robot for Efficient Assessment of Bundled High-Voltage Powerlines [C]// 2019 International Conference on Robotics and Automation (ICRA). Montreal, 2019: 9130-9136. [4] Hui Xiaolong, Bian Jiang, Zhao Xiaoguang, et al. Vision-based autonomous navigation approach for unmanned aerial vehicle transmission-line inspection[J]. International Journal of Advanced Robotic Systems, 2018, 15(1): 172988141775282. [5] 李小彭, 李凯, 樊星, 等. 双臂巡检机器人位姿变化下沿悬链线行走能力分析[J].东北大学学报(自然科学版), 2022, 43(06): 872-880. Li Xiaopeng, Li Kai, Fan Xing, et al. Analysis on the Walking Ability of Dual-arm Inspection Robots Along Catenary Lines with Posture Changes [J]. Journal of Northeastern University (Natural Science), 2022, 43(06): 872-880. [6] 李小彭, 樊星, 李凯, 等. 考虑负载时变的线路巡检机器人动态性能分析[J].东北大学学报(自然科学版), 2022,43(05):660-667. Li Xiaopeng, Fan Xing, Li Kai, et al. Dynamic Performance Analysis of Line Inspecting Robots Considering Time-Varying Loads [J]. Journal of Northeastern University (Natural Science), 2022, 43(05): 660-667. [7] 李小彭, 尚东阳, 李凡杰, 等. 输电线巡检机器人动力学建模与DME评价[J].东北大学学报(自然科学版), 2020,41(09):1280-1284 Li Xiao-peng, Shang Dongyang, Li Fanjie, et al. Dynamic Modeling and DME Evaluation of Power Transmission Line Inspection Robots [J]. Journal of Northeastern University (Natural Science), 2020, 41(09): 1280-1284. [8] 李小彭, 尚东阳, 李凡杰, 等. 输电线巡检机器人位姿变化的柔性关节控制策略[J].东北大学学报(自然科学版),2020,41(11): 59-65. Li Xiaopeng, Shang Dong-yang, Li Fanjie, et al. Flexible Joint Control Strategy Based on Posture Change of Transmission Line Inspection Robots [J]. Journal of Northeastern University (Natural Science), 2020, 41(11): 59-65. [9] Fan Fei, Wu Gongping, Wang Man, et al. Multi-Robot Cyber Physical System for Sensing Environmental Variables of Transmission Line [J]. Sensors, 2018, 18(9): 3146. [10] Alhassan Bala Ahmad, Zhang Xiaodong, Guo Jian, et al. Modelling, Simulation and Vibration Analysis of Transmission Line Inspection Robot Based on Mass Spring Damper Concept [C]//Proceedings of the 2017 International Conference on Applied Mathematics. Shanghai, 2017: 312-317. [11] Guo Jian, Zhang Xiaodong, Shen Haiming, et al. Research on Wind Load Characteristics of Bionic Crawling Inspection Robot [C]//2019 IEEE International Conference on Real-time Computing and Robotics (RCAR). Irkutsk, 2019: 385-390. [12] Zhou Chao, Liu Yibing, Ma Zhiyong. Investigation on aerodynamic instability of high-voltage transmission lines under rain-wind condition[J]. Journal of Mechanical Science and Technology, 2015, 29(1):131-139. [13] Zhou Chao, Liu Yibing . Modeling and Mechanism of Rain-Wind Induced Vibration of Bundled Conductors [J]. Shock and Vibration,2016, 2016:1-7. [14] Frahm H. Device for damping vibrations of bodies: US, US989958 A[P]. 1911. [15] Ormondroyd J, Den HARTOG J P. The theory of the dynamic vibration absorber[J]. Journal of Applied Mechanics, 1928, 50: 9-22. [16] Li Chaofeng, Zhu Binbin, Zhang Zijian, et al. Experimental study on rapid oscillation suppression of a pendulum using phase delay motion of pivot[J]. Mechanical Systems and Signal Processing, 2021, 158(5): 107757. [17] Ha Seon, Yoon Gil Ho. Numerical and Experimental Studies of Pendulum Dynamic Vibration Absorber for Structural Vibration [J]. Journal of vibration and acoustics: Transactions of the ASME, 2021(1):143. [18] Matsuhisa, Hiroshi et al. Vibration control of a ropeway carrier by passive dynamic vibration absorbers [J]. Jsme International Journal Series C-mechanical Systems Machine Elements and Manufacturing, 1995, 38: 657-662. [19] La Viet Duc. Combination of Partial Stochastic Linearization and Karhunen-Loeve Expansion to Design Coriolis Dynamic Vibration Absorber [J]. Mathematical Problems in Engineering, 2017, 2017:1-11. [20] Viet, L. Sequential design of two orthogonal dynamic vibration absorbers in a pendulum based on stability maximization[J]. Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, 2012, 226(11):2645-2655. [21] Thomas Furtmüller, Gregor Joas and Christoph Adam. Control of pendulum oscillations by Tuned Liquid Dampers[J]. Journal of Fluids and Structures, 2022, 114, 103753. [22] Nguyen D C. Optimal parameters of tuned mass dampers for an inverted pendulum with two degrees of freedom [J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2021, 235(2):281-293. [23] Li X, Shang D, Li F and Chen R. The climbing performance analysis of a robot for power line inspection with retractable double serial manipulators. Proc IMechE, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022; 236(9): 4946-4961. [24] He B, Zhao M, Feng W, et al. A method for analyzing stability of tower-line system under strong winds [J]. Advances in Engineering Software, 2019, 127:1-7. [25] 汪大海, 李杰, 谢强. 大跨越输电线路风振动张力模型[J].中国电机工程学报, 2009, 29(28): 122-128. Wang Dahai, Li Jie, Xie Qiang. Dynamic Tension Model for Wind-induced Vibration of Long Spanned Transmission Line[J]. Proceedings of the CSEE, 2009, 29(28): 122-128. [26] Shao Zhufeng, Tang Xiao, Wang Liping, et al. Dynamic modeling and wind vibration control of the feed support system in FAST [J]. Nonlinear Dynamics, 2012, 67(2):965-985. [27] Alhassan Ahmad Bala, Zhang Xiaodong, Shen Haiming, et al. Investigation of Aerodynamic Stability of a Lightweight Dual-Arm Power Transmission Line Inspection Robot under the Influence of Wind [J]. Mathematical Problems in Engineering, 2019, 2019: 2139462. [28] Thomas Furtmüller, Gregor Joas, Christoph Adam. Control of pendulum oscillations by Tuned Liquid Dampers[J]. Journal of Fluids and Structure,2022, 114: 103753. [29] L. D. Viet, N.D. Anh, H. Matsuhisa et. The effective damping approach to design a dynamic vibration absorber using Coriolis force[J]. Journal of Sound & Vibration, 2011,330: 1904–1916. [30] 陈杰, 孙维光, 吴杨俊, 等. 基于惯容负刚度动力吸振器的梁响应最小化[J].振动与冲击,2020,39(08):15-22. Chen Jie, SunWeiguang, Wu yangjun, et al. Minimization of beam response using inerter-based dynamic vibration absorber with negative stiffness[J]. Journal of Vibration and Shock, 2020,39(08):15-22. [31] 代晗, 赵艳影. 负刚度时滞反馈控制动力吸振器的等峰优化[J]. 力学学报,2021,53(06):1720-1732. Dai Han, Zhao Yanying. Equal-Peak Optimization of Dynamic Vibration Absorber with Negative Stiffness And Delay Feedback Contorl[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1720-17

PDF(2537 KB)

Accesses

Citation

Detail

段落导航
相关文章

/