耐张型悬索支撑输电结构风振非线性有限元分析

李正良1,2,王邦杰1,王 涛3,4

振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 71-78.

PDF(2240 KB)
PDF(2240 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 71-78.
论文

耐张型悬索支撑输电结构风振非线性有限元分析

  • 李正良1,2,王邦杰1,王 涛3,4
作者信息 +

Nonlinear finite element analysis on the wind-induced vibration of a tension suspension-braced transmission structure

  • LI Zhengliang1,2,WANG Bangjie1,WANG Tao3,4
Author information +
文章历史 +

摘要

耐张型悬索支撑输电结构是一类适用于山地地形的新型输电结构,其主要受风荷载控制。为此,该文发展了该输电结构风振非线性有限元分析模型并开展了结构风振响应分析。首先,考虑结构的几何非线性,通过单元应变能与位移的关系推导了支撑悬索和输电线的三维杆单元切线刚度矩阵;其次,给出了支撑悬索和输电线的单元质量矩阵、阻尼矩阵以及由风荷载等效而得的单元节点荷载向量;再次,基于非线性有限元理论,建立了耐张型悬索支撑输电结构风振非线性动力方程,并采用了结合Newton-Raphson迭代法的Newmark-β法求解非线性动力方程;最后,通过所建立的动力学分析模型对两跨耐张型悬索支撑输电结构进行了风致非线性振动分析。算例分析结果表明:1)提出的模型具有较好的计算精度和较高的计算效率;2)悬索支撑导线部分的低阶固有频率比悬索支撑地线部分的低阶固有频率更低;3)该输电结构的输电线位移响应受风荷载影响较大;4)输电线侧向位移和支撑悬索张力受风速和风向角影响均较显著。

Abstract

The tension suspension-braced transmission structure is a new type of transmission structure suitable for mountainous terrain, which is sensitive to wind load. In this regard, a nonlinear finite element analysis model of wind-induced vibration is proposed for the transmission structure, and the wind-induced vibration response of the structure is analyzed. Firstly, the tangent stiffness matrix of the three-dimensional rod element for the bracing suspension and transmission line, considering the geometric nonlinearity of structures, is derived through the relationship between the element strain energy and its displacement. Subsequently, the element mass matrix and damping matrix of the bracing suspension and transmission line, as well as the element nodal load vector obtained from wind load equivalence are given. Then, based on the nonlinear finite element theory, the nonlinear dynamic equation of wind-induced vibration is established for the tension suspension-braced transmission structure and solved by Newmark-β method combined with Newton-Raphson iterative method. Finally, the two-span tension suspension-braced transmission structure is selected as an example, and the wind-induced nonlinear vibration is analyzed through the proposed model. The results show that: 1) the proposed model has high computational accuracy and efficiency. 2) The low order natural frequency of the suspension-braced conductor part is lower than that of the suspension-braced ground line part. 3) Transmission line displacement response of the structure is greatly affected by wind load. 4) Wind speed and wind direction angle have significant effects on the lateral displacement of transmission line and the suspension tension.

关键词

输电结构 / 悬索支撑 / 风致振动 / 非线性有限元

Key words

transmission structure / suspension-braced / wind-induced vibration / nonlinear finite element

引用本文

导出引用
李正良1,2,王邦杰1,王 涛3,4. 耐张型悬索支撑输电结构风振非线性有限元分析[J]. 振动与冲击, 2024, 43(2): 71-78
LI Zhengliang1,2,WANG Bangjie1,WANG Tao3,4. Nonlinear finite element analysis on the wind-induced vibration of a tension suspension-braced transmission structure[J]. Journal of Vibration and Shock, 2024, 43(2): 71-78

参考文献

[1] 李宏男,白海峰.高压输电塔-线体系抗灾研究的现状与发展趋势[J].土木工程学报,2007,40(2):39-46. LI Hongnan, BAI Haifeng. State-of-the-art review on studies of disater resistance of high-voltage transmission tower-line systems [J]. China Civil Engineering Journal, 2007, 40(2): 39-46. (in Chinese) [2] 楼文娟,吴登国,刘萌萌,等.山地风场特性及其对输电线路风偏响应的影响[J].土木工程学报,2018,51(10): 46-55+77. LOU Wenjuan, WU Dengguo, LIU Mengmeng, et al. Properties of mountainous terrain wind field and their influence on wind-induced swing of transmission lines [J]. China Civil Engineering Journal, 2018, 51(10): 46-55+77. (in Chinese) [3] 刘春城,侯萌.下击暴流作用下输电线路导线风偏响应特性研究[J].振动与冲击,2022,41(22):60-69. LIU Chuncheng, HOU Meng. Wind deflection response characteristics of transmission lines under downburst. Journal of Vibration and Shock, 2022, 41(22): 60-69. (in Chinese) [4] 杨风利,张宏杰,王飞,等. 输电线路导线阵风响应系数研究[J].振动与冲击,2021,40(5):85-91. YANG Fengli, ZHANG Hongjie, WANG Fei, et al. Gust response coefficients of transmission line conductor [J]. Journal of Vibration and Shock, 2021, 40(5): 85-91. (in Chinese) [5] 冯珂,杨登,陈波,等.下击暴流作用下输电导线的动力响应研究[J].武汉理工大学学报,2018,40(4):51-56. FENG Ke, YANG Deng, CHEN Bo, et al. Research on dynamic responses of transmission lines subjected to downburst wind loads [J]. Journal of Wuhan University of Technology, 2018, 40(4): 51-56. (in Chinese) [6] 左太辉.分裂导线气动性能及风振响应研究[D].长沙:湖南大学,2013. ZUO Taihui. Aerodynamic characteristics and wind-induced responses of bundled conductors [D]. Changsha: Hunan University, 2013. (in Chinese) [7] 邓洪洲,朱松晔,王肇民.大跨越输电塔线体系动力特性及风振响应[J].建筑结构,2004,34(7):25-28. DENG Hongzhou, ZHU Songye, WANG Zhaomin. Study on dynamic behavior and wind-induced vibration response of long span transmission line system [J]. Building Structure, 2004, 34(7): 25-28. (in Chinese) [8] 晏致涛,黄静文,李正良.基于结点6自由度的分裂导线有限元模型[J].工程力学,2012,29(8):325-332. YAN Zhitao, HUANG Jingwen, LI Zhengliang. Finite element model of bundle lines based on 6-dof node [J]. Engineering Mechanics, 2012, 29(8): 325-332. (in Chinese) [9] 晏致涛,李正良,杨振华.基于结点6自由度的输电线舞动有限元分析[J].振动与冲击,2011,30(8):112-117. YAN Zhitao, LI Zhengliang, YANG Zhenhua. Finite element modeling of transmission line galloping based on 6-DOFs nodes [J]. Journal of Vibration and Shock, 2011, 30(8): 112-117. (in Chinese) [10] 吕毅刚,余钱华,张建仁.高墩大跨桥梁空间几何非线性分析[J].长沙理工大学学报(自然科学版),2004(2): 28-33. LV Yigang, YU Qianhua, ZHANG Jianren. Spatial geometrical nonlinear analysis of large-span Bridge with High-Pier [J]. Journal of Changsha University of Science and Technology (Natural Science), 2004(2): 28-33. (in Chinese) [11] 陈政清,曾庆元,颜全胜.空间杆系结构大挠度问题内力分析的UL列式法[J].土木工程学报,1992,25(5):34-43. CHEN Zhengqing, ZENG Qingyuan, YAN Quansheng. A UL formulation for internal force analysis of spatial frame structures with large displacement [J]. China Civil Engineering Journal, 1992, 25(5): 34-43. (in Chinese) [12] 唐建民.柔性结构非线性分析的杆单元有限元法[J].中南工学院学报,1996(1):50-55. TANG Jianmin. A nonlinear Finite Element Method with straight-line element for analysis of flexible structures [J]. Journal of Central-South Institute of Technology, 1996(1): 50-55. (in Chinese) [13] 赵滇生. 输电塔架结构的理论分析与受力性能研究[D].杭州:浙江大学,2003. ZHAO Diansheng. The theoretical analysis and study of mechanical behavior for transmission tower [D]. Hangzhou: Zhejiang University, 2003. (in Chinese) [14] 刘光栋,王解君,何放龙.空间梁单元的几何非线性刚度矩阵的分解形式[J].湖南大学学报(自然科学版), 1992(1):60-71. LIU Guangdong, WANG Jiejun, HE Fanglong. Resolved formulation of geometrical nonlinear stiffness matrix for three-dimensional beam element [J]. Journal of Hunan University (Natural Science), 1992(1): 60-71. (in Chinese) [15] 刘树堂.等直杆单元切线刚度矩阵的精确分析方法[J].计算力学学报,2014,31(1):48-53. LIU Shutang. Accurate analysis method on the tangential stiffness matrix of pinned straight rod element [J]. Chinese Journal of Computational Mechanics, 2014, 31(1): 48-53. (in Chinese) [16] 王勖成.有限单元法[M].北京:清华大学出版社,2003. WANG Xucheng. Finite Element Method [M]. Beijing: Tsinghua University Press, 2003. (in Chinese) [17] JAKOB M. Wind field simulation [J]. Probabilistic Engineering Mechanics, 1998, 13(4). [18] GB 50009-2012, 建筑结构荷载规范[S].北京:中国建筑工业出版社,2012. GB 50009-2012, Load code for the design of building structures [S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)

PDF(2240 KB)

340

Accesses

0

Citation

Detail

段落导航
相关文章

/