改进Reddy型三阶剪切变形理论下FG-GRC板弯曲和模态分析的无网格法

杨立军1,陈孔2,陈卫3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 79-87.

PDF(1790 KB)
PDF(1790 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (2) : 79-87.
论文

改进Reddy型三阶剪切变形理论下FG-GRC板弯曲和模态分析的无网格法

  • 杨立军1,陈孔2,陈卫3
作者信息 +

Meshless method for the bending and modal analysis of FG-GRC plates based on the improved Reddy type third order shear deformation theory

  • YANG Lijun1,CHEN Kong2,CHEN Wei3
Author information +
文章历史 +

摘要

基于含7个自由度变量的改进Reddy型三阶剪切变形理论(TSDT)假设,采用稳定移动最小二乘近似(SMLS)的无网格法研究了功能梯度石墨烯增强复合材料(functionally graded graphene-reinforced composite ,FG-GRC)板结构的静态线性弯曲和自振模态。通过Halpin-Tsai模型来估算材料的有效杨氏模量,有效质量密度和泊松比由混合定律确定。利用最小势能原理和Hamition原理分别推导了FG-GRC板的线性弯曲和自振频率无网格控制方程。由于基于SMLS构造的形函数不满足克罗内克条件,故采用完全转换法处理本质边界条件。文中首先介绍了基于TSDT下FG-GRC板的SMLS离散模型。随后通过与已有成果进行比较,检验了本文方法的收敛性及准确性。最后数值分析了石墨烯片(GPLs)分布模式,重量分数、几何参数、总层数及边界条件等对FG-GRC板结构弯曲和模态的影响。

Abstract

Based on the assumption of the improved Reddy type third-order deformation theory (TSDT) with seven degrees of freedom variables, the static linear bending and natural vibration modes of functionally graded graphene-reinforced composite (FG-GRC) plate structures are studied by using the meshless method of stabilized moving least-square approximation (SMLS). The effective Young's modulus of the material is estimated by Halpin-Tsai model, and the effective mass density and Poisson's ratio are determined by the rule of mixture. The meshless governing equations of linear bending and natural frequency of FG-GRC plates are derived by using the principle of minimum potential energy and Hamilton principle, respectively. Since the shape function based on SMLS does not satisfy the Kronecker condition, the complete transformation method is used to deal with the essential boundary conditions. Firstly, the SMLS discrete model of FG-GRC plate based on TSDT is introduced. Then, the convergence and accuracy of this method are tested by comparing with the existing results. Finally, the effects of the distribution mode of graphene sheets (GPLs), weight fraction, geometric parameters, total number of layers and boundary conditions on the bending and mode of FG-GRC plate structure are numerically analyzed.

关键词

改进Reddy型三阶剪切变形理论 / 功能梯度石墨烯增强复合材料板 / 稳定移动最小二乘近似 / 线性弯曲 / 自振频率

Key words

improved Reddy type third-order shear deformation theory / functionally graded graphene-reinforced composite plate / stabilized moving least-square approximation / linear bending / natural frequency

引用本文

导出引用
杨立军1,陈孔2,陈卫3. 改进Reddy型三阶剪切变形理论下FG-GRC板弯曲和模态分析的无网格法[J]. 振动与冲击, 2024, 43(2): 79-87
YANG Lijun1,CHEN Kong2,CHEN Wei3. Meshless method for the bending and modal analysis of FG-GRC plates based on the improved Reddy type third order shear deformation theory[J]. Journal of Vibration and Shock, 2024, 43(2): 79-87

参考文献

[1] IIJIMA S. Helical microtubles of graphitic carbon[J]. Nature, 1991, 354: 56-58. [2] KIM H, ABDALA A A, MACOSKO C W. Graphene/polymer nanocomposites[J]. Macromolecules, 2010, 43(16): 6515-6530. [3] RAFIEE M A, RAFIEE J, WANG Z, Et Al. Enhanced mechanical properties of nanocomposites at low graphene content[J]. ACS nano, 2009, 3(12): 3884-3890. [4] KOIZUMI M. FGM activities in Japan[J]. Composites Part B: Engineering, 1997, 28(1-2): 1-4. [5] YANG J, WU H, KITIPORNCHAI S. Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams[J]. Composite Structures, 2017, 161: 111-118. [6] FENG C, KITIPORNCHAI S, YANG J. Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs)[J]. Composites Part B: Engineering, 2017, 110: 132-140. [7] FENG C, KITIPORNCHAI S, YANG J. Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs)[J]. Engineering Structures, 2017, 140: 110-119. [8] SONG M, YANG J, KITIPORNCHAI S. Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets[J]. Composites Part B: Engineering, 2018, 134: 106-113. [9] SONG M, LI X, KITIPORNCHAI S, et al. Low-velocity impact response of geometrically nonlinear functionally graded graphene platelet-reinforced nanocomposite plates[J]. Nonlinear Dynamics, 2019, 95(3): 2333-2352. [10] WU H, YANG J, KITIPORNCHAI S. Parametric instability of thermo-mechanically loaded functionally graded graphene reinforced nanocomposite plates[J]. International Journal of Mechanical Sciences, 2018, 135: 431-440. [11] WU H, KITIPORNCHAI S, YANG J. Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates[J]. Materials & Design, 2017, 132: 430-441. [12] REDDY R M R, KARUNASENA W, LOKUGE W. Free vibration of functionally graded-GPL reinforced composite plates with different boundary conditions[J]. Aerospace Science and Technology, 2018, 78: 147-156. [13] GUO H, CAO S, YANG T, et al. Vibration of laminated composite quadrilateral plates reinforced with graphene nanoplatelets using the element-free IMLS-Ritz method[J]. International Journal of Mechanical Sciences, 2018, 142: 610-621. [14] GHOLAMI R, ANSARI R. Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular plates[J]. Engineering Structures, 2018, 156: 197-209. [15] 庞有卿, 王爱文, 郝育新, 等. 功能梯度石墨烯增强复合材料板的自由振动[J]. 应用力学学报, 2020, 37(02), 558-565. PANG Youqing, WANG Aiwen, HAO Yuxin, et al. Free vibration of functionally graded graphene-reinforced composite plates[J]. Chinese Journal of Applied Mechanics, 2020, 37(02), 558-565.(In Chinese) [16] 王壮壮, 马连生. 高阶剪切变形板理论下FG-GRC板的屈曲和弯曲分析[J]. 工程力学, 2022, 1-10. WANG Zhuang-zhuang, MA Lian-sheng. Buckling and bending analysis of FG-GRC plates using high-order shear deformation plate theories[J]. Engineering Mechanics, 2022, 1-10. (In Chinese) [17] 王冰冰. 高阶无网格法的节点积分及薄板壳力学分析[D]. 大连: 大连理工大学, 2018. WANG Bing-bing. Nodal integration of high order meshfree methods and mechanical analysis for thin plates and shells[D]. Dalina: Dalian university of technology, 2018. (In Chinese) [18] 李迪. 板壳畸变单元的无网格和有限元自适应耦合方法研究[D]. 上海: 上海交通大学, 2009. LI Di. Research on adaptive method coupling meshless method and finite element for distortion elements of plates and shells[D]. Shanghai: Shanghai Jiao Tong University, 2009. (In Chinese) [19] 彭林欣. 加肋板自由振动的移动最小二乘无单元分析[J]. 振动与冲击, 2011, 30(6), 74-80. PENG Lin-xin. Moving least-square meshless analysis on free vibration behaviors of ribbed plates[J]. Journal of Vibration and Shock, 2011, 30(6), 74-80. (In Chinese) [20] 彭林欣. 对称层合折板结构自由振动分析的移动最小二乘无网格法[J]. 振动与冲击, 2011, 30(8), 275-281. PENG Lin-xin. Free vibration solving of a symmetrically laminated folded plate with moving-least square meshfree method[J]. Journal of Vibration and Shock, 2011, 30(8), 275-281. (In Chinese) [21] LIEW K M, PENG L X, KITIPORNCHAI S. Vibration analysis of corrugated Reissner–Mindlin plates using a mesh-free Galerkin method[J]. International Journal of Mechanical Sciences, 2009, 51(9-10): 642-652. [22] PENG L X, CHEN S Y, WEI D Y, et al. Static and free vibration analysis of stiffened FGM plate on elastic foundation based on physical neutral surface and MK method[J]. Composite Structures, 2022, 290: 115482. [23] SELIM B A, ZHANG L W, LIEW K M. Vibration analysis of CNT reinforced functionally graded composite plates in a thermal environment based on Reddy's higher-order shear deformation theory[J]. Composite Structures, 2016, 156(nov.): 276-290. [24] SALKAUSKAS P L. Surfaces generated by moving least squares methods[J]. Mathematics of Comptutation, 1981, 37(155): 141-158. [25] LI X, LI S. On the stability of the moving least squares approximation and the element-free Galerkin method[J]. Computers & Mathematics with Applications, 2016, 72(6): 1515-1531. [26] AFFDL J H, KARDOS J L. The Halpin‐Tsai equations: a review[J]. Polymer Engineering & Science, 1976, 16(5): 344-352. [27] REDDY J N. A simple higher-order theory for laminated composite plates[J]. Journal of Applied Mechanics, 1984, 51(4): 745-752. [28] SELIM B A, ZHANG L W, LIEW K M. Active vibration control of FGM plates with piezoelectric layers based on Reddy's higher-order shear deformation theory[J]. Composite Structures, 2016, 155(nov.): 118-134. [29] CHEN J S, PAN C, WU C T, et al. Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(4): 195-227. [30] AREFI M, BIDGOLI E M, DIMITRI R, et al. Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets[J]. Aerospace Science and Technology, 2018, 81: 108-117. [31] THAI C H, FERREIRA A, PHUNG-VAN P. Size dependent free vibration analysis of multilayer functionally graded GPLRC microplates based on modified strain gradient theory[J]. Composites Part B: Engineering, 2019, 169: 174-188.

PDF(1790 KB)

415

Accesses

0

Citation

Detail

段落导航
相关文章

/