风扰下非线性气弹系统的分数阶自适应振动控制

李迺璐1, 徐文涛1, 骆紫薇1, 穆安乐2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 1-9.

PDF(2178 KB)
PDF(2178 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 1-9.
论文

风扰下非线性气弹系统的分数阶自适应振动控制

  • 李迺璐1,徐文涛1,骆紫薇1,穆安乐2
作者信息 +

Fractional-order adaptive control of nonlinear aeroelastic system with wind disturbance

  • LI Nailu1,XU Wentao1,LUO Ziwei1,MU Anle2
Author information +
文章历史 +

摘要

非线性气弹系统在平稳风速下呈现极限振荡环的振动特性,在风扰下呈现无序、非线性和随机的振动特性。本文提出了一种基于输出反馈的分数阶自适应控制器(FDAC),用于风速扰动下非线性气弹系统的振动控制。首先,本文基于分数阶微积分和直接自适应控制理论设计了分数阶自适应振动控制器。其次,理论推导了合适的分数阶参数范围,理论分析了FDAC比整数阶自适应控制器(DAC)在气弹控制和抗扰控制方面更具优越性,并利用Kalman-Yacubovich定理证明了控制系统的稳定性。本文通过仿真试验,说明了FDAC能够在大范围、随机强风扰动下显著提高非线性气弹系统的振动控制和抗扰控制性能,试验结果验证了理论推导。

Abstract

The behaviors of nonlinear aeroelasitc system show limit cycle oscillations under smooth airflow and irregular, nonlinear, randomly varying oscillations under the turbulence. A fractional-order direct adaptive controller (FDAC) based on output feedback is proposed to suppress the vibration of nonlinear aeroelastic system under wind disturbance. First, the FDAC is designed based on fractional calcus and direct adaptive control theory. Then, the appropriate range of fractional order parameters are deduced. The advantage of FDAC on aeroelastic control and disturbance rejection is theoretically analyzed, compared with integral order direct adaptive controller (DAC). The stability of proposed controller is proved by Kalman-Yacubovich lemma. Simulation results reveal that the proposed FDAC can significantly improve the performance of vibration control and disturbance rejection, under large and random wind disturbance for nonlinear aeroelastic system. The simulation results also verify the theoretical inclusions. 

关键词

非线性气弹系统 / 风扰 / 振动控制 / 分数阶自适应控制

Key words

nonlinear aeroelastic system / wind disturbance / vibration control / fractional adaptive control

引用本文

导出引用
李迺璐1, 徐文涛1, 骆紫薇1, 穆安乐2. 风扰下非线性气弹系统的分数阶自适应振动控制[J]. 振动与冲击, 2024, 43(20): 1-9
LI Nailu1, XU Wentao1, LUO Ziwei1, MU Anle2. Fractional-order adaptive control of nonlinear aeroelastic system with wind disturbance[J]. Journal of Vibration and Shock, 2024, 43(20): 1-9

参考文献

[1] 杨洪磊,张明明,徐建中. 海上风电叶片智能控制实验系统研制及控制效果分析 [J]. 工程热物理学报, 2021, 42(3):611-618.
Yang H L, Zhang M M, Xu J Z. Development of smart control experiment system for offshore wind turbine blades and analysis of control effect[J].Journal of Engineering Thermophysics, 2021, 42(3):611-618.
[2] Ajaj R M. Parancheerivilakkathil M S, Amoozgar M. Recent developments in the aeroelasticity of morphing aircraft[J]. Progress of Aerospace Science, 2021,120:1-29.
[3] 周金龙,董凌华,杨卫东,刘士明. 基于加权最小二乘辨识的后缘襟翼智能旋翼振动载荷闭环控制仿真研究[J]. 振动与冲击,2019,38(4):237-244.
Zhou J L.Dong L H, Yang W D, Liu S M. Closed-loop vibration control simulation of a helicopter active rotor with trailing-edge flapsbased on the weighted-least-squares-error identification method [J]. Journal of Vibration and Shock, 2019, 38(4):237-244.
[4] Dos Santos L G P, Marques F D. Nonlinear aeroelastic analysis of airfoil section under stall flutter oscillations and gust loads[J]. Journal of Fluid and Structure, 2021, 102:1-20. 
[5] Sanches L, Guimaraes T A M, Marques F D. Aeroelastic tailoring of nonlinear typical section using the method of multiple scales to predict post-flutter stable LCOs[J]. Aerospace Science Technology,2019, 90:157-168.
[6] Zhang M M, Li X, Xu J Z. Smart control of fatigue loads on a floating wind turbine with a tension-leg-platform[J]. Renewable Energy, 2019, 134: 745-756. 
[7] Li N L, Yang H, Mu A L. Improved Grey Particle Swarm Optimization and New Luus-Jaakola Hybrid Algorithm Optimized IMC-PID Controller for Diverse Wing Vibration Systems[J]. Complexity, 2019, 2019:1-21. 
[8] Liu, T R.Vibration and aeroelastic control of wind turbine blade based on B-L aerodynamic model and LQR controller[J]. Journal of Vibroengineering, 2017, 19(2): 1074-1089. 
[9] Xu X Z, Wu W X, Zhang W G. Sliding Mode Control for a Nonlinear Aeroelastic System through Backstepping[J]. Journal of Aerospace Engineering, 2018, 31(1):1-11. 
[10] Zhang B, Han J L, Ma R Q. Adaptive fuzzy control of nonlinear aeroelastic system with measurement noise[J]. Journal of Vibroengineering, 2021, 23(5): 1184-1195. 
[11] 穆安乐,张广兴,李迺璐等. 基于分布式襟翼风力机桨叶的模型预测振动控制[J]. 振动与冲击,37(14):79-85.
Mu A L, Zhang G X, Li N L. Model predictive flow control of wind turbine blades based on distributed flaps[J]. Journal of Vibration and Shock, 37(14):79-85. 
[12] 刘廷瑞,常林. 弯扭耦合风力机叶片的准稳态响应及LLTR控制[J]. 振动与冲击 2018, 37(13): 123-129. 
Liu T R, Chang L. Quasi-steady response and LLTR control of a wind turbine blade with bending-torsion coupled[J]. 振动与冲击 2018, 37(13): 123-129.
[13] 刘廷瑞,孙长乐,李善耀等.抑制风力机发电机叶片高频振动的尾缘襟翼主动控制方法 [J]. 工程科学与技术, 2021, 53(5): 166-174.
Liu T R, Sun C L, Li S Y. Active Control Method of Trailing-edge Flap for Suppressing High-frequency Vibration of Wind Turbine Blades[J]. Advanced Engineering Science, 2021, 53(5): 166-174.
[14] 漆良文,石可重,郭乃志等. 漂浮式风电机组无模型自适应控制[J]. 太阳能学报, 2023, 44(5):384-390.
Qi L W, Shi K Z, Guo N Z. Model-free adaptive control of floating wind turbine[J]. Acta Energiae Solaris Sinca, 2023, 44(5):384-390.
[15] Zhang K, Marzocca P, Behal A. Adaptive aeroelastic control of nonlinear airfoil with multiple flaps under unsteady flow[J]. Journal of Vibration and Control, 2017, 23(10):1593-1606. 
[16] Tang D F, Chen L, Tian Z F, Hu E. Adaptive nonlinear optimal control for active suppression of airfoil flutter via a novel neural-network-based controller[J]. Journal of Vibration and Control,2018, 24(22):5261-5272. 
[17] Fazelzadeh S A, Azadi M, Azadi E. Suppression of nonlinear aeroelastic vibration of a wing/store under gust effects using an adaptive-robust controller[J]. Journal of Vibration and Control, 2017, 23(7):1206-1217. 
[18] Lee K W, Singh S N.L-1 adaptive control of an aeroelastic system with unsteady aerodynamics and gust load[J]. Journal of Vibration and Control,2018, 24(2):303-322. 
[19] Mousavi Y, Alfi A. A memetic algorithm applied to trajectory control by tuning of Fractional Order Proportional-Integral-Derivative controllers[J]. Applied Soft Computation, 2015, 36:599-617. 
[20] Chen L, Saikumar N, Hosseinnia SH. Development of Robust Fractional-Order Reset Control[J]. IEEE Transactions on Control Systems Technology, 2019, 99:1-28.
[21] Huang S H, Wang J. Fixed-time fractional-order sliding mode control for nonlinear power systems[J]. Journal of Vibration and Control, 2020, 26(17):17-18.
[22] 刘廷瑞,常林.基于偏移量控制的MPC算法在预扭叶片振动控制中的应用[J].振动与冲击,2019, 38(13):172-178.
Liu T R, Lin C. Application of the MPC algorithm based on offset control in vibration control of pretwisted blades[J]. Journal of Vibration and Shock, 2019, 38(13):172-178.
[23] Li N L, Mu A L, Yang H, Magar K T. Optimized under-actuated control of blade vibration system under wind uncertainty[J]. Journal of Sound and Vibration, 2020, 467:115070. 
[24] Yu W, Zhang M M, Xu J Z. Effect of smart rotor control using a deformable trailing edge flap on load reduction under normal and extreme turbulence[J]. Energies, 2012, 5:3608-3626. 
[25] Kallesoe B S, A low-order model for analyzing effects of blade fatigue load control[J]. Wind Energy, 2006,9: 421-436.
[26] Li N L.Adaptive control of flow over wind turbine blade[D]. Laramie: University of wyoming, USA, 2013.
[27] Norelys A C, Manuel A D M. Fractional adaptive control for an automatic voltage regulator[J]. ISA Transactions, 2013, 52: 807–815.
[28] Magar K T, Balas M J, Frost S, Li N L.Adaptive State Feedback—Theory and Application for Wind Turbine Control[J]. Energies, 2017, 10:1-15.
[29] Xu J X, Chen L, Chang C H. Tuning of fuzzy PI controllers based on gain/phase margin specifications and ITAE index[J]. ISA Transactions, 1996, 35(1):79-91. 
[30] Wu L H, Wang Y N, Zhou S W, Tan W. Design of PID controller with incomplete derivation based on differential evolution algorithm[J]. Journal of Systems Engineering and Electronics, 2008,19(3): 578-583. 

PDF(2178 KB)

Accesses

Citation

Detail

段落导航
相关文章

/