特殊附加变形对列车通过超大跨度铁路桥梁的动力影响

孙志昂1, 2, 杨新文1, 2, 赵文博3, 戚志刚4

振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 10-17.

PDF(1946 KB)
PDF(1946 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 10-17.
论文

特殊附加变形对列车通过超大跨度铁路桥梁的动力影响

  • 孙志昂1,2,杨新文1,2,赵文博3,戚志刚4
作者信息 +

Influence of special additional deformation on high-speed train dynamic responses on an ultra-large span railway bridge

  • SUN Zhi'ang1,2,YANG Xinwen1,2,ZHAO Wenbo3,QI Zhigang4
Author information +
文章历史 +

摘要

极端温差作用等复杂边界条件将引起高速铁路桥梁的特殊附加变形,影响轨道几何形位,增加桥上高速列车运行失稳的风险。针对我国高速铁路某长江大桥的长期监测与现场测试数据,分析温度与风速等环境数据的历史极值,研究轨道几何形位特征与高速综合检测车过桥的动力响应。建立有限元模型探究梁轨附加变形对轨道几何形位的影响,开展车辆—轨道—桥梁耦合系统有限元方法与多体动力学计算联合仿真分析,探究大温差作用对高速列车动力响应的影响。结果表明:(1)某长江大桥的长期监测数据显示,最高气温实测值41.3℃、最低气温实测值-8.9℃,1小时内温度骤升最大值4.9℃、温度骤降最大值-10.7℃;(2)现场测试表明,某长江大桥的轨道几何形位良好,TQI指数合格,轮轨相互作用与车体动力响应正常;(3)仿真计算表明,大温差作用导致钢轨伸缩量最大达到630.19mm,轨道局部高低偏差最大达到19.89mm,超过容许限值,桥上行车出现偏载,主跨桥墩和钢轨伸缩调节器附近的列车运行垂向Sperling平稳性指标达到2.72,车体低频横向晃动也有所增益。

Abstract

Special boundary conditions such as high temperature difference cause additional track-bridge deformation, which affects track geometry and increases instability risk of high-speed train. Based on the long-term monitoring data and field testing of a certain Yangtze River bridge in China, extremes of temperature and wind speed data since the operation were introduced and characteristics of track geometry and dynamic responses were analyzed. A finite element model to analyze the influence of additional deformation on track geometry was established. United simulation method, which is composed of Finite Element Method and Multi-body Dynamics Analysis, laid the foundation of explaining the influence of temperature difference on dynamic responses of high-speed train. The results show that: (1) The long-term monitoring data show that the maximum temperature is 41.3℃ and the minimum temperature is -8.9℃; the maximum temperature sudden rise is 4.9℃, and the maximum temperature sudden fall is -10.7℃. (2) Track geometry and TQI index of the Yangtze River Bridge was in a good state. Wheel-rail responses and vehicle vibration satisfied requirements. (3) The extreme temperature difference causes the rail expansion to reach a maximum of 630.19mm, and the maximum longitudinal level of rail to reach 19.89mm, which is beyond the limit, resulting in eccentric loadings. The vertical Sperling index in the areas of piers and Rail Expansion Joints reaches 2.72, and lateral swing of the vehicle also becomes more obvious.

关键词

高速铁路 / 特大跨度桥梁 / 温差作用 / 列车动力响应

Key words

high-speed railway / long-span bridge / temperature difference / train dynamic response

引用本文

导出引用
孙志昂1, 2, 杨新文1, 2, 赵文博3, 戚志刚4. 特殊附加变形对列车通过超大跨度铁路桥梁的动力影响[J]. 振动与冲击, 2024, 43(20): 10-17
SUN Zhi'ang1, 2, YANG Xinwen1, 2, ZHAO Wenbo3, QI Zhigang4. Influence of special additional deformation on high-speed train dynamic responses on an ultra-large span railway bridge[J]. Journal of Vibration and Shock, 2024, 43(20): 10-17

参考文献

[1] 黄林,廖海黎,王骑,等. 2300 m超大跨度扁平钢箱梁悬索桥颤振稳定性优化研究[J]. 振动与冲击,2022,41(14):210-217.
HUANG Lin, LIAO Haili, WANG Qi, et al. Flutter stability optimization of a 2300m super long-span flat steel box girder suspension bridge[J]. Journal of Vibration and Shock, 2022, 41(14):210-217.
[2] 李立峰,尹会娜,唐嘉豪,等. 大跨径斜拉桥横向合理抗震体系研究[J]. 振动与冲击,2022,41(06):153-159.
LI Lifeng, YIN Huina, TANG Jiahao, et al. Reasonable later seismic system of a long-span cable stayed bridge[J]. Journal of Vibration and Shock, 2022, 41(06):153-159.
[3] LI Y, ZHU S, CAI C S, et al. Dynamic response of railway vehicles running on long-span cable-stayed bridge under uniform seismic excitations[J]. International Journal of Structural Stability and Dynamics, 2016, 16(05): 1550005.
[4] 雷虎军,林镇荣,温家生,等. 波浪-地震联合作用下高速铁路跨海斜拉桥车桥耦合振动研究[J]. 振动与冲击,2023,42(24):16-23.
LEI Hujun, LIN Zhenrong, WEN Jiasheng, et al. Vehicle-bridge coupling vibration of high-speed railway sea-crossing cable-stayed bridge under combined wave-earthquake action[J]. Journal of Vibration and Shock, 2023, 42(24):16-23.
[5] 刘林芽,李辉,秦佳良,等. 考虑扣件温频变的车轨桥垂向耦合系统振动能量研究[J]. 振动与冲击,2022,41(01):161-168.
LIU Linya, LI Hui, QIN Jialiang, et al. Vibration energy of vehicle-rail-bridge vertical coupled system considering fastener temperature frequency variation[J]. Journal of Vibration and Shock, 2022, 41(01):161-168.
[6] 李小珍,杨得旺,郑净,等. 轨道交通桥梁减振降噪研究进展[J]. 中国公路学报,2018,31(07):55-75+136.
LI Xiaozhen, YANG Dewang, ZHENG Jing, et al. Review on Vibration and Noise Reduction of rail trasit bridges[J]. China Journal of Highway and Transport, 2018, 31(07):55-75+136.
[7] 戴公连,葛浩. 高铁长大桥上不同无砟轨道无缝线路受力研究[J]. 铁道工程学报,2018,238(7):23-29.
DAI Gonglian, GE Hao. Analysis of the Continuously Welded Rail of Different Ballastless Track on the High-speed Railway Long-span Bridge. Journal of Railway Engineering Society, 2018, 238(7): 23-29. 
[8] SHI K, HE X H, ZOU Y F, et al. An Efficient Non-Iterative Hybrid Method for Analyzing Train-Rail-Bridge Interaction Problems[J]. International Journal of Structural Stability and Dynamics, 2021, 21(2): 2150029.
[9] 高亮,张雅楠,吕宝磊,等. 千米级以上超大跨径桥上无缝线路梁轨相互作用分析及应用[J]. 北京交通大学学报,2021,45(4):9-18.
GAO Liang, ZHANG Yanan, LYU Baolei, et al. Analysis and application of continuous welded rail’s beam-track interaction on ultra-large span bridges above one kilometer[J]. Journal of Beijing Jiaotong University, 2021,45(4): 9-18.
[10] 蔡小培,刘万里,谢铠泽,等. 大跨悬索桥上无缝线路纵向力分析与结构方案比选[J]. 铁道学报,2021,43(2):160-167.
CAI Xiaopei, LIU Wanli, XIE Kaize, et al. Longitudinal Force Analysis and Structural Scheme Comparison for CWR on Long-span Suspension Bridges[J]. Journal of the China Railway Society, 2021, 43(2): 160-167.
[11] 闫斌,甘睿,张高祥,等. 千米级铁路悬索桥上无缝线路纵向力分布规律研究[J]. 铁道学报,2021,43(03):130-135.
YAN Bin, GAN Rui, ZHANG Gaoxiang, et al. Study on Distribution Law of Longitudinal Force on Continuously Welded Rails on Kilometer Level Railway Suspension Bridge[J]. Journal of the China Railway Society, 2021, 43(03): 130-135.
[12] 闫斌,付贺鑫,余丽梅,等. 大跨度拱桥上无缝线路纵向力分布规律研究[J]. 铁道学报,2023,45(3):9-15.
YAN Bin, FU Hexin, YU Limei, et al. Longitudinal Force Distribution of CWR on Long-span Arch Bridge[J]. Journal of the China Railway Society, 2023, 45(3): 9-15.
[13] 方佳畅,黄天立,李苗,等. 基于迁移学习和Bi-LSTM神经网络的桥梁温度-应变映射建模方法[J]. 振动与冲击,2023,42(12):126-134+186.
FANG Jiachang, HUANG Tianli, LI Miao, et al. A method of modeling temperature-strain mapping relationship for long-span cable-stayed bridges using transfer learning and bi-directional long short-term memory neural network[J]. Journal of Vibration and Shock, 2023, 42(12):126-134+186.
[14] HAN Z, ZHU S, ZHAI W, et al. Static and dynamic effects of train-track-bridge system subject to environment-induced deformation of long-span railway bridge[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2023, 237(1): 93-103.
[15] 张建,龙许友,王会永. 高铁大跨度悬索桥轨道长波不平顺测量及控制[J]. 铁道工程学报,2023,40(02):18-22.
ZHANG Jian, LONG Xuyou, WANG Huiyong. Measurement and control of Long Wave Track Irregularity of Long-span Suspension bridge on high-speed railway[J]. Journal of Railway Engineering, 2023, 40(02):18-22.
[16] 张鹏飞,温月,李兆泉. 静风荷载下大跨斜拉桥上无缝线路受力与变形[J]. 振动与冲击,2024,43(03):7-13.
ZHANG Pengfei, WEN Yue, LI Zhaoquan. Stress and deformation of seamless CWR on large-span cable-stayed bridge under static wind load[J]. Journal of Vibration and Shock, 2024, 43(03):7-13.
[17] 谭社会,林超,梅琴. 高速铁路有砟轨道钢轨伸缩调节器运营状态研究[J]. 铁道科学与工程学报,2021,18(04):837-843.
TAN Shehui, LIN Chao, MEI qin. Study on the operation status of ballasted track in the rail expansion joint of high-speed railway[J]. Journal of Railway Science and Engineering, 2021, 18(04): 837-843.
[18] 吴长青,张志田,王林凯,等. 大跨悬索桥时域颤振有限元精细化分析[J]. 振动与冲击,2023,42(24):1-7.
WU Changqing, ZHANG Zhitian, WANG Linkai et al. Time-domain flutter finite element Analysis of Long-span Suspension Bridges [J]. Journal of Vibration and Shock, 2023, 42(24):1-7.
[19] 冯青松,廖春明,孙魁,等. 温度荷载对连续梁桥上无砟轨道变形特性影响分析[J]. 铁道科学与工程学报,2021,18(9): 2280-2288.
FENG Qingsong, LIAO Chunming, SUN kui, et al. Influence of complex temperature load on ballastless track on continuous beam bridge[J]. Journal of Railway Science and Engineering, 2021, 18(9): 2280-2288.
[20] 李鹏鑫,邢书科,王兆刚,等. 温度-轨道不平顺组合激励下车-轨-桥耦合动力响应分析[J]. 铁道标准设计,2024,68(01):72-79.
LI Pengxin, XING Shuke, WANG Zhaogang, et al. Analysis of Coupled Dynamic Response of Temperature-track Irregularity Combined Excitation Train-Track-Bridge[J]. Railway Standard Design, 2024, 68(01):72-79.
[21] 杨新文,张昭,孟玮,等. 道岔区固定辙叉心轨垂磨对轮轨动态接触的影响[J]. 同济大学学报(自然科学版),2020,48(11):1595-1604.
YANG Xinwen, ZHANG Zhao, MENG Wei, et al. Effect of Vertical Wear of Unmovable Frog Nose Rail on Dynamic Wheel-rail Contact in Turnout Zone[J]. Journal of Tongji University (Natural Science), 2020, 48(11): 1595-1604.
[22] 王树国,高原,杨东升. 高原铁路铺设跨区间无缝线路可行性研究与试验方案[J]. 中国铁路,2022,8:22-28.
WANG Shuguo, GAO Yuan, YANG Dongsheng. Feasibility Study and Test Scheme of Trans-section CWR Track Laid on Plateau Railway[J]. China Railway, 2022, 8: 22-28.
[23] 王平,杨荣山主编. 轨道工程[M]. 北京:机械工业出版社, 2021.
WANG Ping, YANG Rongshan (Ed.) Track Engineering [M]. Beijing: China Machine Press, 2021.
[24] 中华人民共和国铁道部. 高速铁路有砟轨道线路维修规则:TG/GW 116-2013[S]. 北京:中国铁道出版社, 2013.
Ministry of Railways of the People's Republic of China. High-speed railway ballast track line maintenance rules: TG/GW 116-2013[S]. Beijing: China Railway Publishing House, 2013.
[25] 国家铁路局. 高速铁路设计规范:TB 10621-2014[S]. 北京:中国铁道出版社, 2014.
National Railway Administration. Design Specification for high-speed railway: TB 10621-2014[S]. Beijing: China Railway Publishing House, 2014.
[26] 程飞,段金超,何越磊,等. 千米跨度高铁桥梁的轨道不平顺时频特征分析[J/OL]. 铁道标准设计,1-11. [2024-01-13] https://doi.org/10.13238/j.issn.1004-2954.202304260003.
CHENG Fei, DUAN Jinchao, HE Yuelei, et al. Analysis of the time and frequency characteristics of track irregularities of high-speed railroad bridges with kilometer span[J/OL]. Railway standard design, 1-11 [2024-01-13] https://doi.org/10.13238/j.issn.1004-2954.202304260003.
[27] 杨静静,高芒芒,赵文博,等. 基于大跨度桥梁变形的桥上车体振动加速度简化分析方法[J]. 中国铁道科学,2023,44(04):101-110.
YANG Jingjing, GAO MangMang, ZHAO Wenbo, et al. Simplified Analysis Method of Car-Body Vibration Acceleration on Bridge Based on Long-span Bridge Deformation[J]. China Railway Science,2023,44(04):101-110.
[28] 国家铁路局. 铁路轨道设计规范:TB10082-2017[S]. 北京:中国铁道出版社, 2017.
National Railway Administration. Specification for Railway Track Design: TB10082-2017[S]. Beijing: China Railway Publishing House, 2017.
[29] PIOTROWSKI J, KIK W. A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations [J]. Vehicle System Dynamics, 2008, 46:27.

PDF(1946 KB)

Accesses

Citation

Detail

段落导航
相关文章

/