钢悬链线立管全尺寸共振弯曲疲劳试验系统与模态分析

徐泽鑫1, 安晨1, 谢智1, 张吉祥2, 林方坚3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 119-127.

PDF(1915 KB)
PDF(1915 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 119-127.
论文

钢悬链线立管全尺寸共振弯曲疲劳试验系统与模态分析

  • 徐泽鑫1,安晨1,谢智1,张吉祥2,林方坚3
作者信息 +

A full-scale resonant bending test system and modal analysis of steel catenary risers

  • XU Zexin1,AN Chen1,XIE Zhi1,ZHANG Jixiang2,LIM Frank3
Author information +
文章历史 +

摘要

钢悬链线立管(SCR)作为支撑海上平台和其他关键设备的重要组成部分,在极端的海洋环境中长时间服役运行时,其结构完整性和安全性至关重要。为确保SCR立管在恶劣环境下的安全运行,对立管进行共振弯曲疲劳试验研究成为必要的评估标准,同时也为后续立管疲劳寿命预测和失效分析提供基础。本文针对两种特定型号的SCR立管,推导并求解不同约束条件下的共振系统的固有频率与振型函数,分析管道长度、管道壁厚、偏心块和配重块质量对共振系统固有频率的影响;在此基础上开展不同特定工况下的全尺寸共振弯曲疲劳试验,同时对SCR立管在全尺寸共振弯曲疲劳试验系统中不同跨距及内压的振动响应特性进行了模拟。结合理论分析、有限元计算和共振弯曲疲劳试验结果,发现管道长度和两端的配重约束是影响共振系统一阶固有频率的重要参数,特别是在管道长度较短和壁厚较薄的情况下,影响更为显著。此外,注水加压和跨距增加会降低共振系统的固有频率,支撑跨距越短,系统的固有频率越大。以上分析结果为SCR立管的共振弯曲疲劳试验系统结构设计和试验方案优化提供了重要的参考依据。

Abstract

Steel Catenary Risers (SCRs) serve as essential components for supporting offshore platforms and other crucial equipment. Ensuring the structural integrity and safety of SCRs are paramount during prolonged operations in extreme marine environments. Conducting resonant bending fatigue tests on the risers has emerged as a requisite evaluation standard to guarantee their safe operation under harsh conditions, and it also forms the basis for subsequent predictions of fatigue life and analysis of failures. This study focused on deriving and solving the natural frequency and mode functions of the resonance system under different constraint conditions for two specific types of SCRs, and analyzes the effects of pipeline length, pipeline wall thickness, eccentric block and counterweight mass on the natural frequency of the resonance system. Subsequently, full-scale resonant bending fatigue tests were conducted under different specific operating conditions, and the vibration response characteristics of the SCRs with different spans and internal pressures in the full-scale resonant bending fatigue test system were simulated. The integration of theoretical analysis, finite element calculations and results from resonant fatigue tests revealed that the pipeline length and the counterweight constraints at both ends are critical parameters affecting the first-order natural frequency of the resonance system, especially the impact is particularly pronounced when the pipe length is short and the wall thickness is thin. Additionally, internal pressure and an increasing span will decrease the natural frequency of the resonance system, and a shorter support span will result in a higher natural frequency of the system. These analytical results provide an important reference basis for the structural design and optimization of the test plan of the resonant bending fatigue test system of SCR.

关键词

钢悬链线立管 / 共振弯曲 / 疲劳试验 / 固有频率 / 全尺寸 / 模态特性

Key words

steel catenary riser / resonant bending / fatigue testing / natural frequency / full-scale / modal characteristics

引用本文

导出引用
徐泽鑫1, 安晨1, 谢智1, 张吉祥2, 林方坚3. 钢悬链线立管全尺寸共振弯曲疲劳试验系统与模态分析[J]. 振动与冲击, 2024, 43(20): 119-127
XU Zexin1, AN Chen1, XIE Zhi1, ZHANG Jixiang2, LIM Frank3. A full-scale resonant bending test system and modal analysis of steel catenary risers[J]. Journal of Vibration and Shock, 2024, 43(20): 119-127

参考文献

[1] 黄维平, 白兴兰, 李华军. 国外深水钢悬链线立管研究发展现状[J]. 中国海洋大学学报(自然科学版), 2009, 39(2): 290-294. DOI:10.16441/j.cnki.hdxb.2009.02.022.
HUANG Weiping, BAI Xinglan, LI Huajun. State of the Art of Research and Development of Overseas Deepwater Steel Catenary Risers[J]. Periodical of Ocean University of China, 2009, 39(2): 290-294. DOI:10.16441/j.cnki.hdxb.2009.02.022.
[2] 杨伟, 李旭, 任翠青, 等. 深水钢制悬链线立管疲劳敏感性分析研究[J]. 石油和化工设备, 2021, 24(3): 31-34.
YANG Wei, LI Xu, REN Cuiqing, et al. Research on fatigue sensitivity analysis of deepwater steel catenary risers[J]. Petro-Chemical Equipment, 2021, 24(3): 31-34.
[3] 刘秀全, 陈国明, 畅元江, 等. 海洋油气立管疲劳试验方法[C]//第十三届中国科协年会第13分会场-海洋工程装备发展论坛论文集. 中国科学技术协会、天津市人民政府, 2011: 5[2021-07-21].
LIU Xiuquan, CHEN Guoming, CHANG Yuanjiang, et al. Fatigue Test Methods for Marine Risers[C]//The 13th Session of the 13th China Association for Science and Technology Annual Conference-Proceedings of the Ocean Engineering Equipment Development Forum. China Association for Science and Technology, Tianjin Municipal People’s Government, 2011: 5.
[4] CAMPBELL M. The complexities of fatigue analysis for deepwater risers[C]//Proceedings of the Deepwater Pipeline Conference, New Orleans, USA. 1999.
[5] OKU Y, SUGINO M, ANDO Y, et al. Fretting fatigue on thread root of premium threaded connections[J]. Tribology International, 2017, 108: 111-120. DOI:10.1016/j.triboint.2016.10.021.
[6] YU J, WANG F, YU Y, et al. Test System Development and Experimental Study on the Fatigue of a Full-Scale Steel Catenary Riser[J]. Journal of Marine Science and Engineering, 2022, 10(9): 1325. DOI:10.3390/jmse10091325.
[7] LIU F, ZHOU S, XIA C, et al. Optimization of fatigue life distribution model and establishment of probabilistic S–N curves for a 165ksi grade super high strength drill pipe steel[J]. Journal of Petroleum Science and Engineering, 2016, 145: 527-532. DOI:10.1016/j.petrol.2016.06.018.
[8] MOU Y, LIAN Z, LI W, et al. The effect of friction welding on the mechanical properties and corrosion fatigue resistance of titanium alloy drill pipe[J]. Fatigue & Fracture of Engineering Materials & Structures, 2022, 45(2): 466-481. DOI:10.1111/ffe.13609.
[9] ZHANG Y H, MADDOX S J. Fatigue Testing of Full Scale Girth Welded Pipes Under Variable Amplitude Loading[J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(2): 021401. DOI:10.1115/1.4026025.
[10] SANTUS C, BERTINI L, BURCHIANTI A, et al. Fatigue resonant tests on drill collar rotary shouldered connections and critical thread root identification[J]. Engineering Failure Analysis, 2018, 89: 138-149. DOI:10.1016/j.engfailanal.2018.02.027.
[11] WITTENBERGHE J V, PAUW J D, BAETS P D, et al. Experimental determination of the fatigue life of modified threaded pipe couplings[J]. Procedia Engineering, 2010, 2(1): 1849-1858. DOI:10.1016/j.proeng.2010.03.199.
[12] 张志远. 海洋隔水管多接头全尺寸疲劳试验技术[D]. 中国石油大学(北京), 2016[2021-07-21].
ZHANG Zhiyuan. Full-scale Fatigue Test Technology Research on Multiple Welding Joints of Marine Riser[D]. China University of Petroleum(Beijing), 2016.
[13] NETTO T A, LOURENC¸O M I, BOTTO A. Fatigue Performance of Reeled Risers[C]//23rd International Conference on Offshore Mechanics and Arctic Engineering, Volume 3. Vancouver, British Columbia, Canada: ASMEDC, 2004: 235-246[2023-07-06]. DOI:10.1115/OMAE2004-51426.
[14] 吴翔实, 高连新, 袁鹏斌. 石油钻杆接头上扣扭矩计算方法研究[J]. 钻采工艺, 2017, 40(2): 67-70+9-10. DOI:10.3969/J.ISSN.1006-768X.2017.02.20.
WU Xiangshi, GAO Lianxin, YUAN Pengbin. Research on calculation method of make-up torque of oil drill pipe joints[J]. Drilling & Production Technology, 2017, 40(2): 67-70+9-10. DOI:10.3969/J.ISSN.1006-768X.2017.02.20.
[15] OKEKE C P, THITE A N, DURODOLA J F, et al. A novel test rig for measuring bending fatigue using resonant behaviour[J]. Procedia Structural Integrity, 2018, 13: 1470-1475. DOI:10.1016/j.prostr.2018.12.303.
[16] SCHNEIDER S, HERRMANN R, MARX S. Development of a resonant fatigue testing facility for large-scale beams in bending[J]. International Journal of Fatigue, 2018, 113: 171-183. DOI:10.1016/j.ijfatigue.2018.03.036.
[17] WITTENBERGHE J V, COSTE A. Fatigue Testing of Large-Scale Steel Structures in Resonance with Directional Loading Control[J]. Procedia Structural Integrity, 2019, 19: 41-48. DOI:10.1016/j.prostr.2019.12.006.
[18] 胡艳华, 唐德渝, 方总涛, 等. 海洋管道全尺寸疲劳试验技术的研究现状与发展趋势[J]. 石油工程建设, 2013, 39(04): 1-7. DOI:10.3969/j.issn.1001-2206.2013.04.001.
HU Yanhua, TANG Deyu, FANG Zongtao, et al. Research status and development trend of full-scale fatigue test technology for offshore pipelines[J]. Petroleum Engineering Construction, 2013, 39(04): 1-7. DOI:10.3969/j.issn.1001-2206.2013.04.001.
[19] BUITRAGO J, WEIR M S, KAN W C. Fatigue Design and Performance Verification of Deepwater Risers[C]//Volume 3: Materials Technology; Ocean Engineering; Polar and Arctic Sciences and Technology; Workshops: 卷 36835. 2003: 351-366. DOI:10.1115/OMAE2003-37492.
[20] 何宁, 杨琥, 王辉, 等. 深水钢悬链线立管全尺寸共振弯曲疲劳试验设计参数的确定[J]. 石油矿场机械, 2022, 51(4): 43-49. DOI:10.3969/j.issn.1001-3482.2022.04.001.
HE Ning, YANG Hu, WANG Hui, et al. Determination of Design Parameters for Full-Size Resonant Bending Fatigue Test of Deep Water Steel Catenary Riser[J]. Oil Field Equipment,2022,51(04):43-49. DOI:10.3969/j.issn.1001-3482.2022.04.001.
[21] 王会峰, 何宁, 李旭, 等. 钢悬链线立管全尺寸疲劳试验方法研究[J]. 中国造船, 2022, 63(4): 192-198.
WANG Huifeng, HE Ning, LI Xu, et al. Study on Full Scale Fatigue Test of Steel Catenary Riser[J]. Shipbuilding of China, 2022, 63(4): 192-198.
[22] 王耀锋, 樊春明, 侯晓东, 等. 海洋立管全尺寸共振疲劳试验机理研究与应用[J]. 石油机械, 2017, 45(12): 38-42. DOI:10.16082/j.cnki.issn.1001-4578.2017.12.008.
WANG Yaofeng, FANG Chunming, HOU Xiaodong, et al. Research on Full-size Resonant Fatigue Test of Marine Riser[J]. China Petroleum Machinery, 2017, 45(12): 38-42.
[23] 梁珂. 海洋管道共振全尺寸疲劳试验研究[D]. 中国石油大学(北京), 2018[2021-07-23].
LIANG Ke. Study on Full-size Fatigue Test of Marine Pipeline Resonance[D]. China University of Petroleum(Beijing), 2018.
[24] 梁珂, 胡艳华, 唐德渝, 等. 基于全尺寸疲劳试验系统的海洋管道模态分析[J]. 石油机械, 2018, 46(02): 53-57. DOI:10.16082/j.cnki.issn.1001-4578.2018.02.010.
LIANG Ke, HU Yanhua, TANG Deyu, et al. Modal Analysis of Marine Pipeline Based on Full-scale Fatigue Test System[J]. China Petroleum Machinery, 2018, 46(02): 53-57. DOI:10.16082/j.cnki.issn.1001-4578.2018.02.010.
[25] 余建星, 李振眠, 余杨, 等. 轴力和水压作用下深水输液管道湿模态振动特性分析[J]. 振动与冲击, 2021, 40(12): 90-96, 113. DOI:10.13465/j.cnki.jvs.2021.12.012.
YU Jianxing, LI Zhenmian, YU Yang, et al. Wet Modal Vibration Analysis for Submarine Fluid-conveying Pipeline under Axial Tension and Hydrostatic Pressure[J]. Journal of Vibration and Shock, 2021, 40(12): 90-96, 113. DOI:10.13465/j.cnki.jvs.2021.12.012.
[26] 肖斌, 周玉龙, 高超, 等. 考虑流体附加质量的输流管道振动特性分析[J]. 振动与冲击, 2021, 40(15): 182-188. DOI:10.13465/j.cnki.jvs.2021.15.023.
XIAO Bin, ZHOU Yulong, GAO Chao, et al. Analysis of Vibration Characteristics of Pipeline with Fluid Added Mass[J]. Journal of Vibration and Shock, 2021, 40(15): 182-188. DOI:10.13465/j.cnki.jvs.2021.15.023.
[27] 吴晨, 余建星, 余杨, 等. 张紧器系统对顶张式立管固有频率的影响研究[J]. 振动与冲击, 2020, 39(11): 209-216. DOI:10.13465/j.cnki.jvs.2020.11.028.
WU Chen, YU Jianxing, YU Yang, et al. Influence Analysis of Tensioner System on Natural Frequency of Top Tensioned Riser[J]. Journal of Vibration and Shock, 2020, 39(11): 209-216. DOI:10.13465/j.cnki.jvs.2020.11.028.
[28] 朱红钧, 丁志奇, 高岳, 等. 海洋钢悬链线立管振动响应与疲劳预测[J]. 西南石油大学学报(自然科学版), 2023, 45(1): 163-179. DOI:10.11885/j.issn.1674-5086.2020.10.25.02.
ZHU Hongjun, DING Zhiqi, GAO Yue, et al. Vibration Response and Fatigue Prediction of Marine Steel Catenary Risers[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(1): 163-179. DOI:10.11885/j.issn.1674-5086.2020.10.25.02

PDF(1915 KB)

Accesses

Citation

Detail

段落导航
相关文章

/