基于直接快速迭代滤波和自适应深度残差网络的旋转机械故障诊断方法

童靳于, 唐世钰, 郑近德, 尹壮壮, 潘海洋

振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 162-171.

PDF(3177 KB)
PDF(3177 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 162-171.
论文

基于直接快速迭代滤波和自适应深度残差网络的旋转机械故障诊断方法

  • 童靳于,唐世钰,郑近德,尹壮壮,潘海洋
作者信息 +

A direct fast iterative filtering and adaptive deep residual network based fault diagnosis method for rotating machinery#br#

  • TONG Jinyu,TANG Shiyu,ZHENG Jinde,YIN Zhuangzhuang,PAN Haiyang
Author information +
文章历史 +

摘要

针对深度残差网络(Deep residual network, ResNet)无法在噪声环境下精确诊断的问题,提出了一种基于直接快速迭代滤波(Direct fast iterative filtering,DFIF)和自适应深度残差网络(Adaptive deep residual network, AResNet)的方法,并将其应用于噪声环境下旋转机械的故障诊断中。首先,在采集的振动信号中增加不同强度的噪声,再经DFIF分解得到若干个本征模态函数(Intrinsic mode function, IMF)分量,选取综合评价指标值最小的IMF分量作为输入样本。其次,提出了自适应残差单元(Adaptive residual building unit, ARBU),ARBU通过计算各个通道的最优系数,自适应地放大故障敏感特征和抑制无关特征,能够更好地替代传统的残差单元(Residual building unit, RBU)。最后,基于ARBU构造AResNet,输入样本经过AResNet得到故障诊断结果。将所提方法应用于噪声背景下旋转机械的故障诊断中,在两个不同数据集中进行了验证。研究结果表明,与现有方法相比,所提方法具有更高的噪声鲁棒性、稳定性和更优的计算效率,且能够更好地解决旋转机械在噪声背景下故障特征难以有效挖掘的问题。

Abstract

Aiming at the problem that deep residual network (ResNet) cannot diagnose accurately in noisy environment, a method based on direct fast iterative filtering (DFIF) and an adaptive deep residual network (AResNet) is proposed. The method is applied to the fault diagnosis of rotating machinery in noisy environment. Firstly, different intensities of noise are added to the collected vibration signal, and then several Intrinsic Mode Function (IMF) components are obtained through DFIF decomposition. The IMF component with the smallest comprehensive evaluation index value is selected as the input sample. Secondly, Adaptive Residual Building Unit (ARBU) is proposed, which identifies the optimal coefficients of each channel, adaptively amplifies fault sensitive features and suppresses irrelevant features, and can better replace traditional Residual Building Unit (RBU). Finally, AResNet is constructed based on ARBU, and the input samples are processed through AResNet to obtain fault diagnosis results. The proposed method is applied to the fault diagnosis of rotating machinery under noisy backgrounds and validated in two different data sets. The results indicate that the proposed method has higher noise robustness, stability and better computational efficiency compared to existing methods. And it can better solve the problem that it is difficult to effectively mine the fault features of rotating machinery under noise backgrounds.

关键词

故障诊断 / 旋转机械 / 深度残差网络 / 直接快速迭代滤波 / 噪声环境

Key words

fault diagnosis / rotating machinery / deep residual network / direct fast iterative filtering / noise environment

引用本文

导出引用
童靳于, 唐世钰, 郑近德, 尹壮壮, 潘海洋. 基于直接快速迭代滤波和自适应深度残差网络的旋转机械故障诊断方法[J]. 振动与冲击, 2024, 43(20): 162-171
TONG Jinyu, TANG Shiyu, ZHENG Jinde, YIN Zhuangzhuang, PAN Haiyang. A direct fast iterative filtering and adaptive deep residual network based fault diagnosis method for rotating machinery#br#[J]. Journal of Vibration and Shock, 2024, 43(20): 162-171

参考文献

[1] 雷亚国,贾峰,孔德同,等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报,2018,54(5):94-104.
LEI Yaguo, JIA Feng, KONG Detong, et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering, 2018, 54(5): 94-104.
[2] CHEN Y, ZHANG D, NI H, et al. Multi-scale split dual calibration network with periodic information for interpretable fault diagnosis of rotating machinery[J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106181.
[3] 杨宇. 基于EMD和支持向量机的旋转机械故障诊断方法研究[D]. 湖南大学,2005.
YANG Yu. Research on Fault Diagnosis Method of Rotating Machinery Based on Empirical Mode Decomposition and Support Vector Machine[D]. Hunan University, 2005.
[4]赵昕海,张术臣,李志深,等. 基于VMD的故障特征信号提取方法[J]. 振动. 测试与诊断,2018,38(1):11-19.
ZHAO Xinhai, ZHANG Shuchen, LI Zhishen, et al. VMD-based fault feature signal extraction method[J]. Journal of Vibration,Measurement & Diagnosis, 2018, 38(1):11-19.
[5] CHEN J, LI Z, PAN J, et al. Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review[J]. Mechanical systems and signal processing, 2016, 70: 1-35.
[6] WANG D, ZHAO Y, YI C, et al. Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings[J]. Mechanical systems and signal processing, 2018, 101: 292-308.
[7] 庄进发,罗键,彭彦卿,等. 基于改进随机森林的故障诊断方法研究[J]. 计算机集成制造系统,009,15(04):777-785.
ZHUANG Jinfa, LUO Jian, PENG Yanqing, et al. Fault diagnosis method based on modified random forests[J]. Computer Integrated Manufacturing Systems, 009, 15(04):777-785.
[8] WIDODO A, YANG B S. Support vector machine in machine condition monitoring and fault diagnosis[J]. Mechanical systems and signal processing, 2007, 21(6): 2560-2574.
[9] XING Y, WANG B, GONG Z, et al. Data-driven fault diagnosis for PEM fuel cell system using sensor pre-selection method and artificial neural network model[J]. IEEE Transactions on Energy Conversion, 2022, 37(3): 1589-1599.
[10] ZHOU J, XIAO M, NIU Y, et al. Rolling bearing fault diagnosis based on WGWOA-VMD-SVM[J]. Sensors, 2022, 22(16): 6281.
[11] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
[12] ELSISI M, TRAN M Q, MAHMOUD K, et al. Effective IoT-based deep learning platform for online fault diagnosis of power transformers against cyberattack and data uncertainties[J]. Measurement, 2022, 190: 110686.
[13] 周奇才,刘星辰,赵炯,等. 旋转机械一维深度卷积神经网络故障诊断研究[J]. 振动与冲击,2018,37(23):31-37.
ZHOU Qicai, LIU Xingchen, ZHAO Jiong, et al. Fault diagnosis for rotating machinery based on 1D depth convolutional neural network[J]. Journal of Vibration and Shock, 2018, 37(23):31-37.
[14] YANG Z, XU B, LUO W, et al. Autoencoder-based representation learning and its application in intelligent fault diagnosis: A review[J]. Measurement, 2022, 189: 110460.
[15] JIN T, YAN C, CHEN C, et al. Light neural network with fewer parameters based on CNN for fault diagnosis of rotating machinery[J]. Measurement, 2021, 181: 109639.
[16] ZHAO X, JIA M, LIN M. Deep Laplacian Auto-encoder and its application into imbalanced fault diagnosis of rotating machinery[J]. Measurement, 2020, 152: 107320.
[17] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[18] HE C, CAO Y, YANG Y, et al. Fault diagnosis of rotating machinery based on the improved multidimensional normalization ResNet[J]. IEEE Transactions on Instrumentation and Measurement, 2023.
[19] YU S, WANG M, PANG S, et al. Intelligent fault diagnosis and visual interpretability of rotating machinery based on residual neural network[J]. Measurement, 2022, 196: 111228.
[20] CICONE A. Iterative filtering as a direct method for the decomposition of nonstationary signals[J]. Numerical Algorithms, 2020, 85(3):811-827.
[21] CHEN B, CHEN X, CHEN F, et al. Integrated early fault diagnosis method based on direct fast iterative filtering decomposition and effective weighted sparseness kurtosis to rolling bearings[J]. Mechanical Systems and Signal Processing, 2022, 171: 108897.
[22] 唐贵基,王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报,2015,49(05):73-81.
TANG Guiji, WANG Xiaolong. Parameter Optimized Variational Mode Decomposition Method with Application to Incipient Fault Diagnosis of Rolling Bearing[J]. Journal of Xi'an Jiaotong University, 2015, 49(05):73-81.
[23] 李川,朱荣荣,杨帅. 基于多指标模糊融合的滚动轴承诊断的最优频带解调方法[J]. 机械工程学报,2015,51(07):107-114.
LI Chuan, ZHU Rongrong, YANG Shuai. Optimal Frequency Band Demodulation for Fault Diagnosis of Rolling Element Bearings Based on Fuzzy Fusion of Multiple Criteria[J]. Journal of Mechanical Engineering, 2015, 49(05):73-81.
[24] HEBDA-SOBKOWICZ J, ZIMROZ R, PITERA M, et al. Informative frequency band selection in the presence of non-Gaussian noise–a novel approach based on the conditional variance statistic with application to bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2020, 145: 106971.
[25] JIN Z, HE D, WEI Z. Intelligent fault diagnosis of train axle box bearing based on parameter optimization VMD and improved DBN[J]. Engineering Applications of Artificial Intelligence, 2022, 110: 104713.
[26] ZHAO M H, ZHONG S, FU X, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2019, 16(7): 4681-4690.
[27] JIANG G, HE H, YAN J, et al. Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox[J]. IEEE Transactions on Industrial Electronics, 2018, 66(4): 3196-3207.
[28] LAURENS V D M, HINTON G. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9(2605): 2579-2605.

PDF(3177 KB)

141

Accesses

0

Citation

Detail

段落导航
相关文章

/