利用负刚度磁流变阻尼器的单层球面网壳三维隔震研究

庄鹏1, 2, 3, 杨佳宁1, 张国伟1, 2, 3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 172-182.

PDF(2639 KB)
PDF(2639 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 172-182.
论文

利用负刚度磁流变阻尼器的单层球面网壳三维隔震研究

  • 庄鹏1,2,3,杨佳宁1,张国伟1,2,3
作者信息 +

Three-dimensional seismic isolation of single-layer spherical lattice shells using magnetorheological negative stiffness dampers

  • ZHUANG Peng1,2,3,YANG Jianing1,ZHANG Guowei1,2,3
Author information +
文章历史 +

摘要

网壳结构三维隔震是备受关注的研究热点之一。已有的研究聚焦于被动型三维隔震装置,其在竖向的性能参数无法实时调控。为解决这一问题,将负刚度磁流变阻尼器(magnetorheological negative stiffness dampers,MRNSDs)与预压弹簧装置(prepressed spring devices,PSD)并联,形成一种可调节阻尼力的竖向隔震装置(MRDNSD-PSD)。面向延长受控结构竖向自振周期的目标,建立了MRNSD的控制策略及其实施方法,利用其模拟了该控制装置的滞回响应。以某周边支承单层球面网壳作为研究对象,将含有MRNSD-PSD的半主动三维隔震系统、两种不同的被动三维隔震系统分别用于提升该结构的抗震性能。通过数模模拟,对上述受控和无控结构进行了地震响应分析。数值结果表明,三种隔震系统均可有效降低结构地震响应,但半主动隔震系统较被动型隔震系统能够提供更优的竖向加速度和竖向位移控制效果。

Abstract

Three-dimensional (3D) isolation of lattice shell structures is a vital research focus at present. Previous studies concentrated on passive 3D isolation bearings without adjustable real-time control capacities. To address the issue, magnetorheological negative stiffness dampers (MRNSDs) were combined with prepressed spring devices (PSDs) in parallel to form a vertical isolation bearing (MRNSD-PSD) with an adjustable damping force. Based on an objective of extending natural period in the vertical direction, a set of control strategy and implementation method of MRNSDs were established, which was used to simulate the cyclic behavior of the proposed damping device. A single-layer spherical lattice shell with surrounding columns was used as a prototype structure. A semi-active isolation system with MRNSD-PSDs and two different passive isolation systems were separately used for the target structure to improve its seismic behavior. The seismic responses of the controlled and uncontrolled structures were analyzed via numerical modeling. The simulation results indicate that all the three different isolation systems are effective in mitigating structural responses, whereas the semi-active isolation system provides superior control effects on vertical accelerations and displacements to the passive isolation systems.

关键词

网壳结构 / 三维隔震 / 负刚度磁流变阻尼器 / 半主动控制 / 地震响应

Key words

lattice shell structure / three-dimensional isolation / magnetorheological negative stiffness damper / semi-active control / seismic response

引用本文

导出引用
庄鹏1, 2, 3, 杨佳宁1, 张国伟1, 2, 3.

利用负刚度磁流变阻尼器的单层球面网壳三维隔震研究 [J]. 振动与冲击, 2024, 43(20): 172-182

ZHUANG Peng1, 2, 3, YANG Jianing1, ZHANG Guowei1, 2, 3. Three-dimensional seismic isolation of single-layer spherical lattice shells using magnetorheological negative stiffness dampers[J]. Journal of Vibration and Shock, 2024, 43(20): 172-182

参考文献

[1] 侯立群, 董事尔, 高玉云, 等. 隔震和消能减震与常规抗震的对比分析[J] . 工程抗震与加固改造,2011,33(2):50‒56.
HOU Liqun, DONG Shier, GAO Yuyun, et al. Comparative analysis of vibration isolation energy dissipation and conventional antiseismic [J]. Earthquake Resistant Engineering and Retrofitting, 2011 ,33(2): 50‒56.
[2] 苏经宇, 曾德民. 我国建筑结构隔震技术的研究和应用[J]. 地震工程与工程振动,2001(4):94‒101.
SU Jingyu, ZENG Demin. Research and application of seismic isolation of buildings in China [J]. Earthquake Engineering and Engineering Dynamics, 2001(4): 94-101.
[3] 龚健, 周云. 摩擦摆隔震技术研究和应用的回顾与前瞻(Ⅰ)—摩擦摆隔震支座的类型与性能[J]. 工程抗震与加固造,2010, 32(3):1‒10.
GONG Jian, ZHOU Yun. State of the art and prospect of the research and application of friction pendulum isolation technology(I) —Types and performance of friction pendulum bearings [J]. Earthquake Resistant Engineering and Retrofitting, 2010, 32(3): 1‒10.
[4] 孔德文, 范峰, 支旭东. 摩擦摆支座在K8型单层球面网壳结构中的隔震研究 [J]. 哈尔滨工业大学学报,2015, 47(12): 9‒15.
KONG Dewen, FAN Feng, ZHI Xudong. Isolation research of friction pendulum bearings in K8 single-layer reticulated domes [J]. Journal of Harbin Institute of Technology, 2015, 47 (12): 9‒15.
[5] 李雄彦, 单明岳, 薛素铎, 等. 摩擦摆隔震单层柱面网壳地震响应试验研究[J]. 振动与冲击,2018,37(6):68‒75+98.
LI Xiongyan, SHAN Mingyue, XUE Suduo, et al. Experimental study on seismic response of single-layer cylindrical latticed shell with FPS [J]. Journal of Vibration and Shock, 2018, 37(6): 68‒75+98.
[6] 贺拥军, 程雅, 周绪红. 新型变刚度滑移支座在网壳中的隔震性能研究 [J]. 湖南大学学报(自然科学版),2022, 49 (3): 145‒153.
HE Yongjun, CHENG Ya, ZHOU Xuhong. Analysis on seismic performance of reticulated shell with a new type of variable stiffness sliding bearing [J]. Journal of Hunan University (Natural Sciences), 2022, 49 (3): 145‒153.
[7] LI Xiongyan, XUE Suduo, CAI Yancheng. Three-dimensional seismic isolation bearing and its application in long span hangars[J]. Earthquake Engineering and Engineering Vibration, 2013, 12: 55‒65.
[8] HAN Qinghua, JING Ming, LU Yan, et al. Mechanical behaviors of air spring-FPS three-dimensional isolation bearing and isolation performance analysis[J]. Soil Dynamics and Earthquake Engineering, 2021, 149: 106872.
[9] ZHANG Huidong, LIANG Xiao, GAO Zhanyuan, et al. Seismic performance analysis of a large-scale single-layer lattice dome with a hybrid three-directional seismic isolation system [J]. Engineering Structures, 2020, 214:110627.
[10] CHEN Zhaotao, DING Yang, SHI Yundong, et al. A vertical isolation device with variable stiffness for long-span spatial structures [J]. Soil Dynamics and Earthquake Engineering, 2019, 123: 543‒558. 
[11] ZHUANG Peng, WEI Luyao, WANG Wei, et al. Feasibility evaluation of pre-pressed spring devices for vertical isolation of single-layer spherical lattice shell structures[J]. Soil Dynamics and Earthquake Engineering, 2022, 158: 107308.
[12] ZHUANG Peng, ZHAO Wenxuan, YANG TY. Seismic protection of a single-layer spherical lattice shell structure using a separated three-dimensional isolation system[J]. Soil Dynamics and Earthquake Engineering, 2023, 172: 108026.
[13] 石运东, 韦鑫, 丁阳, 等. 三维隔震单层球面网壳结构频率相关变阻尼半主动控制[J]. 地震工程与工程振动,2022,42(1):143‒153.
SHI Yundong, WEI Xin, DING Yang. Semi-active control with frequency dependent variable damping for three-dimensional isolated single-layer spherical reticulated shell structure [J]. Earthquake Engineering and Engineering Dynamics, 2022, 42 (1): 143-153. 
[14] 龚薇, 熊世树. 拟负刚度隔震Benchmark模型减震效果及适用性[J]. 华中科技大学学报(自然科学版),2015,43(8):7‒11.
GONG Wei, XIONG Shishu. Effectiveness and adaptability analysis of smart base isolated benchmark model with pseudo negative stiffness control [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43(8): 7‒11.
[15] XU Yanwei, XU Zhaodong, ZHAO Ruili, et al. Multimode vibration control of stay cables using pseudo negative stiffness MR damping system[J]. Journal of Intelligent Material Systems and Structures, 2023, 34 (14): 1617‒1632.
[16] 周炎, 朱炜, 芮筱亭, 等. 双出杆磁流变阻尼器设计与性能分析[J]. 噪声与振动控制,2017,37 (2):178‒181+191.
ZHOU Yan, ZHU Wei, RUI Xiaoting, et al. Design and behavior analysis of two-way pusher-over MRD [J]. Noise and Vibration Control, 2017, 37 (2): 178‒181+191.
[17] WEBER F. Bouc–Wen model-based real-time force tracking scheme for MR dampers [J]. Smart Materials and Structures, 2013, 22(4): 045012.
[18] TAKEUCHI T, OGAWA T, KUMAGAI T. State-of-arts views on response control technologies on metal space structures[C]//Proceeding of the International Association for Shell and Spatial Structures (IASS) Symposium. Valencia: Universidad Politecnica de Valencia, 2009.
[19] 建筑结构荷载规范:GB50009-2012 [S]. 北京:中国建筑工业出版社, 2012.
Code for loading of building structures:GB50009-2012 [S]. Beijing: China Architecture & Building Press, 2012.
[20] 建筑抗震设计规范:GB 50011-2010 [S]. 北京:中国建筑工业出版社, 2016.
Code for seismic design of buildings: GB 50011-2010 [S]. Beijing: China Architecture & Building Press, 2016.
[21] 空间网格结构技术规程:JGJ 7-2010 [S]. 北京:中国建筑工业出版社, 2010.
Technical specification for spatial grid structure: JGJ 7-2010. [S]. Beijing: China Architecture & Building Press, 2010.
[22] 聂桂波, 戴君武, 张辰啸, 等. 芦山地震中大跨空间结构主要破坏模式及数值分析 [J]. 土木工程学报, 2015, 48 (4): 1‒6.
NIE Guibo, DAI Junwu, ZHANG Chenxiao, et al. Failure patterns of large span structures in Lushan earthquake and numerical simulation [J]. China Civil Engineering Journal, 2015, 48 (4): 1‒6.
[23] 建筑隔震设计标准:GB/T 51408-2021 [S]. 北京:中国计划出版社,2021.
Standard for seismic isolation design of building: GB/T 51408-2021 [S]. Beijing: China Planning Press, 2021.
[24] WAHL AM. Mechanical springs [M]. McGraw-Hill Company, New York, 1963.
[25] 李忠献,吴林林,徐龙河, 等.磁流变阻尼器的构造设计及其阻尼力性能的试验研究 [J]. 地震工程与工程振动, 2003, 23 (1):128‒132.
LI Zhongxian, WU Linlin, XU Longhe, et al. Structural design of MR damper and experimental study for performance of damping force [J]. Earthquake Engineering and Engineering Vibration, 2003, 23 (1): 128‒132.
[26] WANG Wenxi, HUA Xuguan, WANG Xiuyong, et al. Mechanical behavior of magnetorheological dampers after long-term operation in a cable vibration control system [J]. Structural Control and Health Monitoring, 2019, 26 (1): e2280.
[27] ZHUANG Peng, WEI Luyao, HAN Miao. Seismic performance assessment of a single-layer spherical lattice shell structure with multifunctional friction pendulum bearings [J]. International Journal of Structural Stability and Dynamics, 2022, 22 (11): 2250119

利用负刚度磁流变阻尼器的单层球面网壳三维隔震研究" title="Share on Weibo" target="_blank">
PDF(2639 KB)

296

Accesses

0

Citation

Detail

段落导航
相关文章

/