基于数据驱动自适应变分非线性chirp模态分解的瞬时频率识别

袁平平1, 满镇2, 赵周杰1, 任伟新3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 18-25.

PDF(1926 KB)
PDF(1926 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 18-25.
论文

基于数据驱动自适应变分非线性chirp模态分解的瞬时频率识别

  • 袁平平1,满镇2,赵周杰1,任伟新3
作者信息 +

Instantaneous frequency identification based on data-driven adaptive variational nonlinear chirp mode decomposition

  • YUAN Pingping1,MAN Zhen2,ZHAO Zhoujie1,REN Weixin3
Author information +
文章历史 +

摘要

为降低初始瞬时频率和信号噪声对变分非线性chirp模态分解(variational nonlinear chirp mode decomposition,VNCMD)的影响,本文提出了一种基于数据驱动自适应变分非线性chirp模态分解(data-driven adaptive variational nonlinear chirp mode decomposition,DDAVNCMD)方法。通过模态能量占比确定响应信号的模态个数,同时采用导数归一化算法初步估算模态分量的初始瞬时频率,并添加迭代时变滤波器来降低噪声的影响,在此基础上再对响应信号进行VNCMD。通过单分量和多分量解析信号及拉索结构试验对所提方法进行验证。研究结果表明,基于DDAVNCMD的瞬时频率识别方法具有较好的准确性和抗噪性。

Abstract

To reduce the impact of initial instantaneous frequency and signal noise on the variational nonlinear chirp mode decomposition (VNCMD), a data-driven adaptive variational nonlinear chirp mode decomposition (DDAVNCMD) is proposed in this paper. The modal number of the response signal is obtained by the proportion of modal energy, and the derivative normalization algorithm is used to preliminarily estimate the initial instantaneous frequencies of the modal components. An iterative time-varying filter is also added to reduce the noise effect. Based on this, the response signal is then subjected to VNCMD. The proposed method is validated through single-component and multi-component analytic signals, as well as a cable structure experiment. The research results indicate that the instantaneous frequency identification method based on DDAVNCMD has good accuracy and anti-noise performance.

关键词

瞬时频率 / 变分非线性chirp模态分解(VNCMD) / 导数归一化 / 迭代时变滤波器 / 数据驱动自适应变分非线性chirp模态分解(DDAVNCMD)

Key words

instantaneous frequency / variational nonlinear chirp mode decomposition (VNCMD) / derivative normalization / iterative time-varying filter / data-driven adaptive variational nonlinear chirp mode decomposition (DDAVNCMD) 

引用本文

导出引用
袁平平1, 满镇2, 赵周杰1, 任伟新3. 基于数据驱动自适应变分非线性chirp模态分解的瞬时频率识别[J]. 振动与冲击, 2024, 43(20): 18-25
YUAN Pingping1, MAN Zhen2, ZHAO Zhoujie1, REN Weixin3. Instantaneous frequency identification based on data-driven adaptive variational nonlinear chirp mode decomposition[J]. Journal of Vibration and Shock, 2024, 43(20): 18-25

参考文献

[1] 闫泓杉, 李丹, 丁林阁. 一种新的基于短时傅里叶变换的时频分析方法[J]. 兵工学报, 2015, 36(S2): 258-261.
YAN Hongshan, LI Dan, DING Linge. A new time-frequency analysis approach based on short time Fourier transform[J]. Acta Armamentarii, 2015, 36(S2): 258-261.
[2] 庞存锁, 刘磊, 单涛. 基于短时分数阶傅里叶变换的时频分析方法[J]. 电子学报, 2014, 42(02): 347-352.
PANG Cunsuo, LIU Lei, SHAN Tao. Time-frequency analysis method based on short-time fractional Fourier transform[J]. Acta Electronica Sinica, 2014, 42(02): 347-352.
[3] Wang H, Chen S, Zhai W. Data-driven adaptive chirp mode decomposition with application to machine fault diagnosis under non-stationary conditions[J]. Mechanical Systems and Signal Processing, 2023, 188: 109997.
[4] 张力新, 贾义红, 许敏鹏, 等. 基于Chirplet变换的变频视觉诱发电位脑-机接口研究[J]. 纳米技术与精密工程, 2014, 12(03): 157-161. 
ZHANG Lixin, JIA Yihong, XU Minpeng, et al. Chirp stimuli visual evoked potential based brain-computer interface by chirplet transform algorithm[J]. Nanotechnology and Precision Engineering, 2014, 12(03): 157-161.
[5] Auger F, Flandrin P. Improving the readability of time-frequency and time-scale representations by the reassignment method[J]. IEEE Transactions on signal processing, 1995, 43(5): 1068-1089.
[6] Yu G, Yu M, Xu C. Synchroextracting transform[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8042-8054.
[7] Smith J S. The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Interface, 2005, 2(5): 443-454.
[8] Feng Z, Liang M, Chu F. Recent advances in time–frequency analysis methods for machinery fault diagnosis: A review with application examples[J]. Mechanical systems and signal Processing, 2013, 38(1): 165-205.
[9] Dragomiretskiy K, Zosso D. Variational mode decomposition[J]. IEEE transactions on signal processing, 2013, 62(3): 531-544.
[10] Peng Y, Li Z, He K, et al. Broadband mode decomposition and its application to the quality evaluation of welding inverter power source signals[J]. IEEE Transactions on Industrial Electronics, 2019, 67(11): 9734-9746.
[11] 陈鹏, 赵小强. 基于优化VMD与改进阈值降噪的滚动轴承早期故障特征提取[J]. 振动与冲击, 2021, 40(13): 146-153.
CHEN Peng, ZHAO Xiaoqiang. Early fault feature extraction of rolling bearing based on optimized VMD and improved threshold denoising[J]. Journal of Vibration and Shock, 2021, 40(13): 146-153.
[12] Chen S, Dong X, Peng Z, et al. Nonlinear chirp mode decomposition: A variational method[J]. IEEE Transactions on Signal Processing, 2017, 65(22): 6024-6037.
[13] Chen S, Yang Y, Peng Z, et al. Adaptive chirp mode pursuit: Algorithm and applications[J]. Mechanical Systems and Signal Processing, 2019, 116: 566-584.
[14] Chen S, Wang K, Peng Z, et al. Generalized dispersive mode decomposition: Algorithm and applications[J]. Journal of Sound and Vibration, 2021, 492: 115800.
[15] Chen S, Du M, Peng Z, et al. High-accuracy fault feature extraction for rolling bearings under time-varying speed conditions using an iterative envelope-tracking filter[J]. Journal of Sound and Vibration, 2019, 448: 211-229.
[16] Cohen F S, Kadambe S, Boudreaux-Bartels G F. Tracking of unknown nonstationary chirp signals using unsupervised clustering in the Wigner distribution space[J]. IEEE transactions on signal processing, 1993, 41(11): 3085-3101.
[17] Gilles J. Empirical wavelet transform[J]. IEEE transactions on signal processing, 2013, 61(16): 3999-4010.
[18] Wang S, Chen X, Cai G, et al. Matching demodulation transform and synchrosqueezing in time-frequency analysis[J]. IEEE Transactions on Signal Processing, 2013, 62(1): 69-84.
[19] Pan M C, Lin Y F. Further exploration of Vold–Kalman-filtering order tracking with shaft-speed information—I: Theoretical part, numerical implementation and parameter investigations[J]. Mechanical systems and signal processing, 2006, 20(5): 1134-1154.
[20] Hou T Y, Shi Z. Adaptive data analysis via sparse time-frequency representation[J]. Advances in Adaptive Data Analysis, 2011, 3: 1-28.
[21] Wang C, Ren W-X, Wang Z-C, et al. Instantaneous frequency identification of time-varying structures by continuous wavelet transform[J]. Engineering Structures, 2013, 52: 17-25.

PDF(1926 KB)

288

Accesses

0

Citation

Detail

段落导航
相关文章

/