周向槽宽度对涡轮增压器转子系统非线性动力学特性影响研究

张聪聪1, 2, 周瑜哲3, 门日秀4, 付晓瑞1, 2, 冯泽民1, 2, 蔡长旺1, 2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 183-191.

PDF(2373 KB)
PDF(2373 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 183-191.
论文

周向槽宽度对涡轮增压器转子系统非线性动力学特性影响研究

  • 张聪聪1,2,周瑜哲3,门日秀4,付晓瑞1,2,冯泽民1,2,蔡长旺1,2
作者信息 +

Research on the influence of circumferential oil-groove width on the nonlinear vibration characteristics for a turbocharger rotor system

  • ZHANG Congcong1,2,ZHOU Yuzhe3,MEN Rixiu4,FU Xiaorui1,2,FENG Zemin1,2,CAI Changwang1,2
Author information +
文章历史 +

摘要

浮环外表面周向槽宽度结构参数会影响外膜压力分布,进而对高速轻载涡轮增压器转子系统非线性振动特性产生显著影响。基于流体润滑机理和有限元理论,建立了包含轴系集总运动方程、浮环轴承瞬态温度模型、润滑油粘温方程以及轴承间隙热变形方程在内的涡轮增压器轴系热-流-固耦合的综合模型,并提出了一种有效的求解策略。通过与试验数据对比,验证了该综合模型的准确性和可靠性。以某柴油机用涡轮增压器转子系统为例,通过三维振动瀑布图研究不同周向槽宽度在低(50°C)、中(90°C)、高(130°C)三种入口油温下转子系统频域瞬态振动响应,结果表明:相对于全圆瓦浮环轴承支撑的转子系统,当周向槽宽度从2.4增加至4.8 mm时,在不同入口油温下转子系统内膜涡动、振荡的转速区间逐渐缩小,振动幅值均大幅降低;但随着周向槽宽度和入口油温的增加,外膜承载力降低,转子系统呈现出刚性运动,即零频振动,并且零频振动幅值高于低频振动,成为主导频率。当周向槽宽度从2.4增加至4.8mm,入口油温为50°C时转子系统的最大无量纲振幅值降幅分别约为67%、75%和83%;当入口油温增加至90°C时转子系统的最大无量纲振幅值降幅分别约38%、75%和82%;当入口油温增加至130°C时最大无量纲振幅值降幅分别约为67%、75%和79%。因此,对于不同的入口油温,周向槽浮环轴承可使转子系统的振动幅值大幅降低,有利于提高转子系统的稳定性,结论可为周向槽浮环轴承的参数设计提供理论参考。

Abstract

The circumferential oil-groove on the floating ring bearing has an important effect on the distribution of the outer oil film pressure, which leads obvious nonlinear vibration for the high-speed and light-loaded turbocharger rotor. Based on the fluid lubrication theory and finite element method, a comprehensive model, including the dynamic equation of the TC rotor, the transient form of thermal energy balance of FRBs, the viscosity-temperature equation of the lubricating oil and the thermal deformation equation of FRBs are established, and the corresponding solving strategy is proposed. The accuracy and reliability of the comprehensive model are verified by the experimental results. Taking the turbocharger rotor system for a diesel engine as an example, the transient vibration response in frequency domain of rotor system with different circumferential oil-groove widths and under different inlet oil temperatures is studied by means of three-dimensional vibration waterfall. It shows that the circumferential oil-groove width is increased for 2.4 to 4.8 mm, the rotational speed range of the inner oil film whip/whirl is reduced, and the inner oil film whirl amplitude decreases greatly under different inlet temperatures. However, with the increase of the width of the circumferential oil-groove and the inlet oil temperature, the bearing capacity of the outer film decreases, which leads to a rigid movement of the rotor system, that is, zero-frequency vibration. The amplitude of zero-frequency vibration is higher than that of low-frequency vibration(subsynchronous), which becomes the dominant frequency. when the circumference groove width increases from 2.4 to 4.8mm and the inlet oil temperature is 50°C, the maximum dimensionless vibration amplitude of the rotor system decreases by about 67%, 75% and 83%, respectively. When the inlet oil temperature is 90°C, the maximum dimensionless vibration amplitude of the rotor system decreases by about 38%, 75% and 82%, respectively. When the inlet oil temperature increases to 130°C, the maximum dimensionless vibration amplitude of the rotor system decreases by about 67%, 75% and 79%, respectively. Therefore, for different inlet oil temperatures, the vibration amplitude of the rotor system can be greatly reduced by the circumferential oil-groove, which is conducive to improving the stability of the rotor system. The conclusion can provide theoretical reference for the parameter design of the circumferential oil-groove for the floating ring bearing.

关键词

周向槽浮环轴承 / 涡轮增压器转子 / 非线性动力特性 / 瞬态响应分析 / 低频振动

Key words

Circumferential oil-groove floating ring bearing / Turbocharger rotor / Nonlinear dynamic characteristics / Transient response analysis / low-frequency vibration

引用本文

导出引用
张聪聪1, 2, 周瑜哲3, 门日秀4, 付晓瑞1, 2, 冯泽民1, 2, 蔡长旺1, 2. 周向槽宽度对涡轮增压器转子系统非线性动力学特性影响研究[J]. 振动与冲击, 2024, 43(20): 183-191
ZHANG Congcong1, 2, ZHOU Yuzhe3, MEN Rixiu4, FU Xiaorui1, 2, FENG Zemin1, 2, CAI Changwang1, 2. Research on the influence of circumferential oil-groove width on the nonlinear vibration characteristics for a turbocharger rotor system[J]. Journal of Vibration and Shock, 2024, 43(20): 183-191

参考文献

[1] Schweizer B, Sievert M. Nonlinear oscillations of automotive turbocharger turbines. Journal of Sound and Vibration. 2009, 321: 955–975.
[2] Schweizer B. Total Instability of turbocharger rotors-physical explanation of the dynamic failure of rotors with full-floating ring bearings. Journal of Sound and Vibration. 2009, 28: 156–90.
[3] Schweizer B. Oil whirl, oil whip and whirl/whip synchronization occurring in rotor systems with full-floating ring bearings[J]. Nonlinear Dynamics, 2009, 57(4): 509–532.
[4] Schweizer B. Dynamics and stability of turbocharger rotors[J]. Archive of Applied Mechanics, 2010, 80(9): 1017–1043.
[5] 宾光富,黄源,钟新利,等. 浮环轴向长度对高速轻载涡轮增压器转子系统振动特性影响研究[J]. 机械工程学报,2019,55(23):173-181.
BIN Guangfu, HUANG Yuan, ZHONG Xinli, et al. Study on the Influence of Floating Ring Axial Length on Vibration Characteristics of High-speed and Light-load Turbocharger Rotor System[J]. Journal of Mechanical Engineering, 2019, 55(23):173-181.
[6] 宾光富,黄源,钟新利,等. 长周期变转速下入口油温对高速轻载涡轮增压器转子振动特性影响[J]. 机械工程学报,2020, 56(21):131-139.
BIN Guangfu, HUANG Yuan, ZHONG Xinli, et al. Effect of Inlet Oil Temperature on Vibration Characteristics of High-speed Light-load Turbocharger Rotor under Long Period and Variable S[peed[J]. 2020, 56(21):131-139.
[7] LI C H. Dynamics of rotor bearing systems supported by floating ring bearings[J]. Journal of Lubrication  Technology,1982,104(4):469-476.
[8] 张文静,陈渭,李培,等. 系统参数对浮环轴承转速比 的动力影响[J]. 四川大学学报(工程科学版),2015, 47(3):160-166.
ZHANG Wenjing,CHEN Wei,LI Pei,et al. Dynamic effects of system parameters on speed ratio of floating  ring bearing[J]. Journal of Si Chuan University  (Engineering Science Edition),2015,47(3):160-166.
[9] CHUN S M. Aeration effects on the performance of a  turbocharger journal bearing[J]. Tribology International, 2008,41(4):296-306. 
[10] BIN G F,HUANG Y,GUO S P,et al. Investigation of induced unbalance magnitude on dynamic characteristics of high-speed turbocharger with floating ring bearings[J].  Chinese Journal of Mechanical Engineering,2018,31(1):88.
[11] 裴世源,徐华,石放辉. 浮环轴承稳态热流体动力润滑 分析[J]. 机械工程学报,2017,53(23):108-115.  
PEI Shiyuan,XU Hua,SHI Fanghui. Study on static thermo-hydrodynamic lubrication of floating ring bearing[J]. Journal of Mechanical Engineering,2017, 53(23):108-115.
[12] 唐召辉,任兴民,王鸷,等. 浮环轴承系统中浮动环涡动运动研究[J]. 振动与冲击, 2010,29(8):195-197. 
    KANG Zhao-hui,REN Xing-min,WANG Zhi,et al. Study on whirl motion of floating-ring in floating-ring bearing system [J]. Journal of Vibration and Shock,2010,29(8):195-197.
[13] WANG L K,BIN G F,LI X J,et al. Effects of floating ring bearing manufacturing tolerance clearances on the dynamic characteristics for turbocharger[J]. Chinese Journal of Mechanical Engineering,2015,28(3):530-540.
[14] BOYACI A,LU D,SCHWEIZER B. Stability and bifurcation phenomena of Laval/Jeffcott rotors in semi-floating ring bearings[J]. Nonlinear Dynamics,2015,79(2):1535- 1561.
[15] 郭红,张直明,张邵琳,等. 径向动压浮环轴承-转子系统多稳定区域研究[J]. 振动与冲击,2016, 35(2):168-172. 
GUO Hong,ZHANG Zhi-ming,ZHANG Shao-lin,et al. Multi stable regions of hydrodynamic floating ring journal bearing-rotor system [J]. Journal of Vibration and Shock,2016, 35(2):168-172.
[16] Zhang CC, Men RX, Wang YL, He H, Chen W. Experimental and numerical investigation on thermodynamic performance of full-floating-ring bearings with circumferential oil-groove[J]. Proceedings of the Institution of Mechanical Engineers Part J: Journal of Engineering Tribology, 2019, 233(8): 1182~1196.

PDF(2373 KB)

86

Accesses

0

Citation

Detail

段落导航
相关文章

/