振动条件下铣刀切削过程物质信息流构建方法

范丽丽, 姜彬, 赵培轶, 李世航

振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 200-212.

PDF(4618 KB)
PDF(4618 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 200-212.
论文

振动条件下铣刀切削过程物质信息流构建方法

  • 范丽丽,姜彬,赵培轶,李世航
作者信息 +

A construction method of material information flow during the milling process under vibration

  • FAN Lili,JIANG Bin,ZHAO Peiyi,LI Shihang
Author information +
文章历史 +

摘要

振动条件下铣刀切削过程物质的传递转换关系是揭示其加工表面形成过程多时变性的关键。依据立铣刀、刀齿、工件之间物质能量的输入输出关系与立铣刀动态切削行为特性,构建铣刀切削过程的物质流结构,揭示各组元间的传递转换关系;利用铣刀、工件等不同物质载体的结构、运动及切削力等参数,定量表征物质流结构各节点的瞬时切削状态;构建物质流结构相邻节点的邻接矩阵,阐明相邻节点之间的传递关系;采用均方根值、峭度、主频与分形维数,揭示铣刀切削过程中物质信息流内部节点的动态特性。对物质信息流输入端、切削层节点及输出端进行实验验证。结果表明,该方法可揭示机床驱动下铣刀切削过程物质的传递与转换过程,为铣削工艺设计提供基础模型。

Abstract

The transfer and transformation of materials during milling under vibration is the key to revealing multi temporal of surface formation. Based on dynamic cutting behavior of milling cutter, the material flow structure was constructed, and transfer and transformation relationships between each component were revealed. Quantitatively characterize instantaneous cutting state of each node in the flow structure with parameters such as the structure, cutting motion, and cutting force. The adjacency matrix of adjacent nodes in the flow structure was constructed, and transfer relationship between adjacent nodes was clarified. Using root mean square, kurtosis, dominant frequency and fractal dimension, dynamic of internal nodes in material information flow were revealed. The input end, cutting layer node, and output end of material information flow were experimentally verified. The results showed that above method could reveal material transfer and transformation of milling process under machine tool drive, providing a basic model for milling process design.

关键词

铣削振动 / 铣刀 / 物质流 / 物质信息流 / 流结构

Key words

milling vibration / milling cutter / material flow / material information flow / flow structure

引用本文

导出引用
范丽丽, 姜彬, 赵培轶, 李世航. 振动条件下铣刀切削过程物质信息流构建方法[J]. 振动与冲击, 2024, 43(20): 200-212
FAN Lili, JIANG Bin, ZHAO Peiyi, LI Shihang. A construction method of material information flow during the milling process under vibration[J]. Journal of Vibration and Shock, 2024, 43(20): 200-212

参考文献

[1]  龙妍,黄素逸,刘可.大系统中物质流、能量流与信息流的基本特征[J].华中科技大学学报(自然科学版), 2008, 36(12): 87-90.
Long Y, Huang S Y, Liu K. The basic characteristics of material flow, energy flow, and information flow in large-scale systems[J]. Journal of Huazhong University of Science and Technology, 2008, 36(12): 87-90.
[2]  李刚,孟亚云,董王英等.基于协同理论的信息物理能源系统多流建模与分析[J].电力建设, 2018, 39(05): 1-9.
Li G, Meng Y, Dong W, et al. Multi flow modeling and analysis of information physical energy systems based on collaborative theory [J]. Electric Power Construction, 2018, 39(05): 1-9.
[3]  Gao T M, Shen L, Shen M, et al. Analysis of material flow and consumption in cement production process[J]. Journal of Cleaner Production, 2016, 112, 553-565.
[4]  Ma S Y, Zhang Y F, Lv J X, et al. Energy-cyber-physical system enabled management for energy-intensive manufacturing industries[J]. Journal of Cleaner Production, 2019, 226: 892-903.
[5]  Zhang J H, Li J Y, Pu X J, et al. Research on judgment and solving strategy of flow problems in complex engineering system[J]. IEEE Access, 2023, 11: 4615-4632.
[6]  窦炜, 袁胜万, 何晓聪.一种改进的螺旋齿铣刀立铣切削力计算方法[J].振动与冲击, 2018, 37(10): 181-186+207.
Dou W, Yuan S, He X. An improved method for calculating the cutting force of helical gear milling cutters in end milling[J]. Vibration and Impact, 2018, 37 (10): 181-186+207.
[7]  朱锟鹏, 李刚. 基于刀具磨损映射关系的微细铣削力理论建模与试验研究[J].机械工程学报, 2021, 57(19): 246-259.
Zhu K, Li G. Theoretical modeling and experimental research on micro milling force based on tool wear mapping relationship [J]. Journal of Mechanical Engineering, 2021, 57 (19): 246-259
[8]  Timothy N, Michael C, Ryan C, et al. Force and stability modeling for non-standard edge geometry endmills[J]. Journal of manufacturing science and engineering: Transactions of the ASME, 2019, 141(12): 121002.
[9] Hu Z H, Qin C J, Shi Z W, et al. An effective thread milling force prediction model considering instantaneous cutting thickness based on the cylindrical thread milling simplified to side milling process[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(4): 1-9.
[10] Feng J Y, Wei Z C, Wang M J, et al. Force prediction model of high efficiency U pass milling, 2021, 117(3-4): 1101-1115.
[11] Bhople N, Mastud S, Satpal S. Modelling and analysis of cutting forces while micro end milling of Ti-alloy using finite element method[J]. International Journal for Simulation and Multidisciplinary Design Optimization, 2021, 12(26):1-10.
[12] 王海艳, 周秩同, 武晔, 等. 基于斜角切削理论的钛合金螺旋铣孔切削力建模[J]. 中国机械工程, 2023, 34(2): 142-147.
Wang H, Zhou Z, Wu Y, et al Modeling of cutting force for titanium alloy spiral milling holes based on oblique cutting theory[J]. China Mechanical Engineering, 2023, 34 (2): 142-147.
[13] Mahboubi H, Asadi M M, Blouin S, et al. A Computationally Efficient Connectivity Index for Weighted Directed Graphs with Application to Underwater Sensor Networks[J]. IEEE Access, 2022, 10: 54822-54832.
[14] Courcelle B. Unfoldings and coverings of weighted graphs[J]. Fundamenta Informaticae, 2022, 189(1): 1-47.
[15] 孙伟, 孔建益, 王兴东, 等.基于构件-构件邻接矩阵的含复铰运动链描述与同构判定[J]. 机械工程学报, 2020, 56(3): 41-46.
Sun W, Kong J, Wang X, et al. Description and isomorphism determination of complex hinge motion chains based on component component adjacency matrix[J]. Journal of Mechanical Engineering, 2020, 56 (3): 41-46.

PDF(4618 KB)

Accesses

Citation

Detail

段落导航
相关文章

/