基于双向流固耦合的舵翼组合结构声振特性研究

张振海1, 仝博1, 屈铎2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 213-220.

PDF(1820 KB)
PDF(1820 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 213-220.
论文

基于双向流固耦合的舵翼组合结构声振特性研究

  • 张振海1,仝博1,屈铎2
作者信息 +

A study on sound and vibration characteristics of a rudder-wing composite structure based on bi-directional fluid-solid coupling

  • ZHANG Zhenhai1,TONG Bo1,QU Duo2
Author information +
文章历史 +

摘要

为实现对水下航行器转舵过程中舵翼周围流场和声场的精细化模拟,以双向流固耦合理论为基础,采用DES湍流模型计算流场信息、利用自动匹配层技术处理声固耦合边界,计算分析了转舵时舵翼组合结构的流-固-声耦合特性,经与模型实验对比验证了该方法的准确性。在此基础上,计算分析了舵角变化、集中载荷、舵内充水、流速对结构声辐射的影响,结果表明:舵角变大增加了流场的不均匀性,降低了舵翼组合结构的刚度,这使得翼型的振动更加剧烈,因此总声压级和振动加速度级均增大;等幅值的周期性激励,载荷分布越集中,对声辐射的贡献越大;舵内充水可降低中高频段范围的声压幅值,但会增加结构声辐射的线谱数量;流速增加会提高流激噪声幅值。

Abstract

In order to achieve precise simulation of the flow field and sound field around the rudder and wing of an underwater vehicle during rudder rotation, based on the bidirectional fluid solid coupling theory, the flow field is calculated by using the DES turbulence model, and the fluid-structure interaction boundary is treated by using the automatic matching layer technology to analyze the fluid-structure interaction characteristics of the rudder-wing combined structure in the rotating process, the accuracy of which has been verified by comparing with model experiments. On this basis, the effects of rudder angle, concentrated loads, water filling inside the rudder, and flow velocity on structural sound radiation were studied. The results show that the increase of rudder angle increases the non-uniformity of the flow field, reduces the stiffness of the rudder-wing structure, and exacerbates the vibration of the airfoil, which contribute to the increase of total sound pressure level and vibration acceleration level; for periodic excitation with equal amplitude, the more concentrated the load distribution, the greater the contribution to sound radiation; filling the rudder with water can reduce the amplitude of sound pressure in the mid to high frequency range, but it will increase the number of line spectra of structural sound radiation. In addition, the increase of flow velocity will increase the sound radiation.

关键词

舵翼结构 / 流固耦合 / 流激噪声 / 振动

Key words

Rudder-wing structure / fluid-solid coupling / flow induced noise / vibration

引用本文

导出引用
张振海1, 仝博1, 屈铎2. 基于双向流固耦合的舵翼组合结构声振特性研究[J]. 振动与冲击, 2024, 43(20): 213-220
ZHANG Zhenhai1, TONG Bo1, QU Duo2. A study on sound and vibration characteristics of a rudder-wing composite structure based on bi-directional fluid-solid coupling[J]. Journal of Vibration and Shock, 2024, 43(20): 213-220

参考文献

[1] 魏应三, 程功, 王东,等.无轴泵喷叶片流激共振产生机理及其抑制[J/OL].哈尔滨工程大学学报,2024(02):1-8[2023-11-09].http://kns.cnki.net/kcms/detail/23.1390.U.20231019.1005.002.html.
WEI Yingsan, CHENG Gong, WANG Dong, et al. Mechanism and noise suppression for the flow-excited resonance of shaftless pumpjet impeller[J/OL]. Journal of Harbin Engineering University,2024(02):1-8[2023-11-09]. http://kns.cnki.net/kcms/detail/23.1390.U.20231019.1005.002.html.
[2] SANDBERG R D,SANDHAM N D,JOSEPH P F.Direct numerical simulations of trailing-edge noise generated by boundary-layer instabilities[J].Journal of Sound and Vibration,2007,304(3):677-690.
[3] CHEN Li,MACGILLIVRAY I R.Prediction of trailing-edge noise based on Reynolds-averaged Navier-Stokes solution[J].AIAA journal,2014,52(12):2673-2682.
[4] 刘占生,马瑞贤,杨帆,等.基于流固耦合作用的柔性体流噪声降噪机理研究[J].机械工程学报,2016,52(10):176-184.
Liu Zhansheng,Ma Ruixian,Yang Fan,et al. Study on Noise Reduction Mechanism of Flow Induced Noise for Flexible Body Based on Fluid-structure Interaction[J]. Journal of Mechanical Engineering, 2016,52(10):176-184.
[5] 吴钦,黄彪,王国玉,等. 基于完全耦合算法的绕水翼流固耦合特性研究[J]. 船舶力学,2017(07):804-813.
WU Qin, HUANG Biao, WANG Guoyu, et al. Study on Fluid Structure Interaction Characteristics of Hydrofoil Based on Complete Coupling Algorithm[J]. Ship Mechanics,2017(07):804-813 (in Chinese).
[6] 胡昊灏,周石头,赵傲,等.水下平板流激声辐射快速预报方法研究[J].振动与冲击,2023,42(20):124-129.
HU Haohao, ZHOU Shitou,ZHAO Ao, et al. A study on a fast prediction method of flow induced acoustic radiation from an underwater plate[J]. Journal of Vibration and Shock, 2023,42(20):124-129.
[7] 彭敏,陈志敏.泵转子流固弱耦合计算与分析[J/OL].海军工程大学学报, https://link.cnki.net/urlid/42.1106.E.20231031.1530.007.
PENG Min, CHEN Zhimin. Numerical simulation of pump rotor using weaker fluid-solid interaction approach[J]. Journal of Naval University of Engineering, https://link.cnki.net/urlid/42.1106.E.20231031.1530.007.
[8] 田晓洁,谢大帅,刘贵杰,等.基于ANSYS的气液两相流海洋立管流固耦合特性分析[J].振动与冲击,2021,40(07):260-267.
TIAN Xiaojie, XIE Dashuai, LIU Guijie, et al. Analysis of fluid - structure interaction characteristics of gas-liquid two-phase flow marine riser based on ANSYS[J]. Journal of Vibration and Shock, 2021,40(07):260-267.
[9] 葛飞飞,沈灿,谢鸥.基于双向流固耦合仿真的新月形尾鳍水动力学特性研究[J].苏州科技大学学报(工程技术版),2023,36(03):74-80.
GE Feifei, SHEN Can, XIE Ou. Research on hydrodynamic characteristics of crescent-shaped tail fins based on bidirectional fluid-structure coupling simulation[J]. Journal of Suzhou University of Science and Technology (Engineering and Technology Edition), 2023,36(03):74-80.
[10] Li W, Wang W Q, Yan Y, et al. A strong-coupled method combined finite element method and lattice Boltzmann method via an implicit immersed boundary scheme for fluid structure interaction[J]. Ocean Engineering, 2020, 214: 107779.
[11] Liu Z, Wang B. Numerical simulation of the three-dimensional unsteady cavitating flow around a twisted hydrofoil[J]. Ocean Engineering, 2019, 188: 106313.
[12] Łojek P, Czajka I, Gołaś A. Numerical Study of the Impact of Fluid–Structure Interaction on Flow Noise over a Rectangular Cavity[J]. Energies, 2022, 15(21): 8017.
[13] 屈铎, 苏永生, 唐宇航. 翼型流激噪声计算及实验研究[J]. 华中科技大学学报(自然科学版), 2021,49(05):38-43.
QU Duo,SU Yongsheng,TANG Yuhang. Calculation and experimental study of flow induced noise of hydrofoil[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021,49(05):38-43.
[14] Magionesi F, Dubbioso G, Muscari R. FSI Analysis of a Marine Rudder Behind a Propeller[C]//ISOPE International Ocean and Polar Engineering Conference. ISOPE, 2023: ISOPE-I-23-485.
[15] 彭利坤,秦珩,陈佳宝,等.潜艇转舵时舵叶材料及舵杆位置对流激噪声特性的影响[J].中国舰船研究,2022,17(03):213-220.
PENG Likun, QIN Hang, CHEN Jiabao, et al. Influence of rudder blade material and rudder stock position on characteristics of induced noise in submarine rudder turning[J]. Chinese Journal of Ship Research, 2022, 17(3): 213–220.
[16] Farhat C,Lesoinne M.Two Efficient Staggered Algorithms for the Serial and Parallel Solution of Three-dimensional Nonlinear Transient Aeroelastic Problems[J].Computer Method in Applied Mechanics and Engineering,2000,182(3):499-515.
[17] 叶正寅,王刚.流固耦合力学基础及其应用[M].哈尔滨:哈尔滨工业大学出版社,2016:183-184.
Ye Zhengyin,Wang Gang,Zhang Weiwei. Foundamentals of Fluid-Structure Coupling and Its Application[M]. Harbin China: Harbin Institute of Technology Press,2016:183-184.
[18] KATO C,YAMADE Y,WANG Hong,et al.Numerical prediction of sound generated from flows with a low Mach number[J].Computer&Fluids,2007,36(1):53-68.
[19] 楼京俊, 屈铎, 唐宇航, 等. 双层圆柱壳舷间声通道对壳体声振性能的影响[J]. 振动与冲击, 2019,38(23):165-170.
Lou Jingjun,Qu Duo,Tang Yuhang,et al.Effects of double-layer cylindrical shell side to side sound channel on whole shell’s vibro-acoustic performance[J]. Journal of Vibration and Shock, 2019,38(23):165-170.
[20] 黄桥高,潘光.水下航行器流噪声特性水洞试验研究[J].西北工业大学学报, 2015, 33(1):141-146.
HUANG Qiaogao, PAN Guang. Water-tunnel experiment about flow-noise characteristic of underwater vehicle[J]. Journal of Northwestern Polytechnical University, 2015, 33(1):141-146.

PDF(1820 KB)

197

Accesses

0

Citation

Detail

段落导航
相关文章

/