全风向下平单轴光伏支架风致扭转气动失稳试验研究

马文勇1, 2, 3, 王贺朋1, 纪寅峰4, 邹创4

振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 221-228.

PDF(3514 KB)
PDF(3514 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 221-228.
论文

全风向下平单轴光伏支架风致扭转气动失稳试验研究

  • 马文勇1,2,3,王贺朋1,纪寅峰4,邹创4
作者信息 +

An experimental study on wind-induced torsional aerodynamic instability of single-axis trackers under all wind directions#br#

  • MA Wenyong1,2,3,WANG Hepeng1,JI Yinfeng4,ZOU Chuang4
Author information +
文章历史 +

摘要

针对平单轴光伏支架风致扭转气动失稳问题,本研究采用全气弹模型,在风洞中复现了光伏支架的扭转气动失稳现象。通过对扭转响应和临界风速的分析,明确了平单轴光伏支架的风致振动特性。结果表明:光伏支架在-45°~45°的倾角范围内都可能发生扭转气动失稳,光伏组件水平放置时临界风速较高;小倾角下阻尼对临界风速影响较小,大倾角下增加阻尼可以提高临界风速;随着来流与光伏支架法线方向夹角(风向角)的增大,临界风速逐渐增加;斜风向下光伏支架尾流端部振动比迎风端部更剧烈。

Abstract

Aiming at the problem of wind-induced torsional aerodynamic instability of single-axis trackers, this study used a full aeroelastic model, and reproduced the phenomenon of torsional aerodynamic instability of the single-axis tracker in wind tunnel test. Through the analysis of torsional response and the critical wind speed, the vibration characteristics of the single-axis trackers are clarified. The results show that torsional aerodynamic instability occurs in the tilt angle range of -45°~45°, and the critical wind speed is higher in tilt angle of 0°,when the module is placed horizontally, than that in the other tilt angles . Damping has little effect on the critical wind speed at small tilt angles, and increasing damping at large tilt angle can increase the critical wind speed. With the increase of the angle between the incoming flow and the normal direction of the single-axis tracker (wind direction), the critical wind speed gradually increases. The vibration of the wake end of the single-axis tracker under oblique wind is more severe than that of the windward.

关键词

平单轴光伏支架 / 气弹模型试验 / 临界风速 / 斜风向 / 阻尼比

Key words

single-axis tracker / aeroelastic model test / critical wind speed / oblique flow / damping ratio

引用本文

导出引用
马文勇1, 2, 3, 王贺朋1, 纪寅峰4, 邹创4. 全风向下平单轴光伏支架风致扭转气动失稳试验研究[J]. 振动与冲击, 2024, 43(20): 221-228
MA Wenyong1, 2, 3, WANG Hepeng1, JI Yinfeng4, ZOU Chuang4. An experimental study on wind-induced torsional aerodynamic instability of single-axis trackers under all wind directions#br#[J]. Journal of Vibration and Shock, 2024, 43(20): 221-228

参考文献

[1]KOUSSA M, CHEKNANE A, HADJI S, et al. Measured and modelled improvement in solar energy yield from flat plate photovoltaic systems utilizing different tracking systems and under a range of environmental conditions [J]. Applied Energy, 2011, 88(5): 1756-71.
[2]LAVE M, KLEISSL J. Optimum fixed orientations and benefits of tracking for capturing solar radiation in the continental United States [J]. Renewable Energy, 2011, 36(3): 1145-52.
[3]BAHRAMI A, OKOYE C O, ATIKOL U. Technical and economic assessment of fixed, single and dual-axis tracking PV panels in low latitude countries [J]. Renewable Energy, 2017, 113: 563-79.
[4]王峰, 王佳盈, 王子健, 等. 大长宽比平单轴光伏板风荷载试验研究 [J]. 湖南大学学报( 自然科学版), 2023, 50(07): 130-9.
Wang Feng, Wang Jiaying, Wang Zijian, et al. Experimental Study on Wind Load of Large Aspect Ratio Flat Uniaxial Photovoltaic Panels [J]. Journal of Hunan University(Natural Sciences), 2023, 50 (07): 130-9.
[5]楼文娟, 单弘扬, 杨臻, 等. 超大型阵列光伏板体型系数遮挡效应研究 [J]. 建筑结构, 2021, 42(05): 47-54.
Lou Wenjuan, Dan Yang, Yang Zhen, et al. Study of shielding effect on shape coefficient of super-large photovoltaic arrays [J]. Building structure, 2021, 42 (05): 47-54.
[6]马文勇, 柴晓斌, 刘庆宽, 等. 底部阻塞对太阳能光伏板风荷载的影响研究 [J]. 建筑结构, 2019, 49(02): 129-34.
Ma Wenyong, Chai Xiaobin, Liu Qingkuan, et al. Study on effect of bottom flow obstruction on wind load of solar photovoltaic panels [J].Building structure, 2019, 49(02): 129-34.
[7]马文勇, 孙高健, 刘小兵,等. 太阳能光伏板风荷载分布模型试验研究 [J]. 振动与冲击, 2017, 36(07): 8-13.
Ma Wenyong, Sun Gaojian, Liu Xiaobing, et al. Tests for wind load distribution model of solar panels [J]. Journal of Vibration and Shock, 2017,36 (07): 8-13.
[8]殷梅子, 邹云峰, 李青婷,等. 单排跟踪式光伏结构风荷载风洞试验研究 [J]. 铁道科学与工程学报, 2020, 17(09): 2354-62.
Yin Meizi, Zou Yunfeng, Li Qingting, et al. Wind tunnel test study on wind load of single row tracking photovoltaic structure [J]. Journal of Railway Science and Engineering, 2020, 17(09): 2354-62.
[9]张炜, 薛建阳, 黄华, 等. 大倾角地面太阳电池板风荷载数值模拟研究 [J]. 太阳能学报, 2021, 42(06): 138-45.
Zhang Wei, Xue Jianyang, Huanghua, et al. Numerical simulation of wind load on solar cell panel with high-inclination [J]. Acta Energiae Solaris Sinica, 2021, 42(06): 138-45.
[10]ZHANG X B, MA W Y, LI H Y, et al. Experimental Investigation of the Torsional Aeroelastic Instability of Single-Axis Solar Trackers [J]. International Journal of Structural Stability and Dynamics, 2023.
[11]MA W Y, ZHANG W D, ZHANG X B, et al. Experimental investigations on the wind load interference effects of single-axis solar tracker arrays [J]. Renewable Energy, 2023, 202: 566-80.
[12]马文勇, 康霄汉, 张晓斌, 等. 均匀流场下平单轴光伏支架扭转气动失稳特征试验研究 [J]. 振动工程学报, 2022: 1-10.
Ma Wenyong, Kang Xiaohan, Zhang Xiaobin, et al. Experimental investigation on the torsional aerodynamic instability characteristics of single-axis PV trackers in smooth flow [J]. Journal of Vibration Engineering, 2022 : 1-10.
[13]ZHANG X B, MA W Y, KANG X H, et al. Experimental study of the torsional aeroelastic instability of single-axis solar trackers under different turbulence intensities [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2023, 240.
[14]EVA M-G, EDUARDO B-M, JORGE P G, et al. Influence of inertia and aspect ratio on the torsional galloping of single-axis solar trackers [J]. Engineering Structures, 2021, 243.
[15]ZHANG X, MA W, ZHANG Z, et al. Experimental study on the interference effect of the wind-induced large torsional vibration of single-axis solar tracker arrays [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2023, 240.
[16]EVA M-G, EDUARDO B-M, JORGE P G, et al. Experimental determination of the resistance of a single-axis solar tracker to torsional galloping [J]. Structural Engineering and Mechanics, 2021, 78: 519-28.
[17]YOUNG E, HE X, KING R, et al. A fluid-structure interaction solver for investigating torsional galloping in solar-tracking photovoltaic panel arrays [J]. Journal of Renewable and Sustainable Energy, 2020, 12(6): 1-9.
[18]刘庆宽. 多功能大气边界层风洞的设计与建设 [J]. 实验流体力学, 2011, 25(03): 66-70.
Liu Qingkuan. Aerodynamic and structure desigh of multifunctionboundary-layer wind tunnel [J]. Journal of Experiments in Fluid Mechanics, 2011,25(03) : 66-70.
[19] 建筑结构荷载规范:GB 50009—2012[S]. 北京:中国建筑 工业出版社,2012.
[20]XU A, MA W, YUAN H, et al. The effects of row spacing and ground clearance on the wind load of photovoltaic (PV) arrays [J]. Renewable Energy, 2024, 220.
[21]SUáREZ J L, CADENAS D, RUBIO H, et al. Vortex Shedding Dynamics Behind a Single Solar PV Panel Over a Range of Tilt Angles in Uniform Flow [J]. Fluids, 2022, 7(10).
[22]ROHR C, BOURKE P A, BANKS D. Torsional instability of single-axis solar tracking systems [C]//Proceedings of the 14th international conference on wind engineering. Porto Alegre. 2015: 21-6
[23]钟容川. 单轴跟踪式光伏支架结构颤振稳定性的CFD分析 [D], 2022.

PDF(3514 KB)

Accesses

Citation

Detail

段落导航
相关文章

/