头部喷气式超空泡航行体垂直入水性能研究

彭睿哲1, 2, 冯和英1, 向敏2, 侯杰1, 房玲1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 238-246.

PDF(1517 KB)
PDF(1517 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 238-246.
论文

头部喷气式超空泡航行体垂直入水性能研究

  • 彭睿哲1,2,冯和英1,向敏2,侯杰1,房玲1
作者信息 +

A study on the vertical water entry performance of a head jet supercavitating navigation body

  • ENG Ruizhe1,2,FENG Heying1,XIANG Min2,HOU Jie1,FANG Ling1
Author information +
文章历史 +

摘要

超空泡外形航行体优异的减阻性能有助于其在水下实现对目标的快速精准打击,头部喷气降载方法良好的缓冲降载效果可极大减小航行体高速入水过程受到的冲击破坏。因此,设计了几种兼具降载和减阻性能的头部喷气式超空泡跨介质航行体模型,并引入单向喷气与双向喷气模式。基于VOF (volume of fluid)多相流模型,研究了头部喷气式超空泡航行体垂直入水过程的空泡、载荷及阻力特性,分析了喷气量对入水性能的影响。 结果表明:头部喷气结合超空泡外形设计可降低航行体入水后的航行阻力,且双向喷气减阻效果更佳,因为双向喷气可以生成使航行体全程无沾湿的全包裹超空泡;头部喷气形成的空腔气垫既能显著降低轴向冲击加速度峰值,又能延迟峰值出现时间,从而降低航行体所受冲击载荷,这方面双向喷气表现也更好;随着喷气量的增加,双向喷气相对降载效率增速表现不佳。

Abstract

The excellent drag reduction performance of the supercavitating shape of the vehicle is helpful to achieve a fast and accurate strike on the target underwater, and the good buffering and load reduction effect of the head jet load reduction method can greatly reduce the impact damage of the vehicle during the high-speed water entry process. Therefore, several models of head-jet supercavitating trans-media vehicle with both load reduction and drag reduction performance were designed, and the one-way jet and two-way jet modes were introduced. Based on the VOF multiphase flow model, the cavitation, load and resistance characteristics of the head jet supercavitation vehicle during the vertical water entry process were studied, and the influence of the jet volume on the water entry performance was analyzed. The results show that the design of the head jet combined with the supercavitation shape can reduce the navigation resistance of the vehicle after entering water, and the drag reduction effect of the two-way jet is better, because the two-way jet can generate a fully wrapped supercavitation that makes the whole process of the vehicle without wetting; the cavity air cushion formed by the head jet can not only significantly reduce the peak axial impact acceleration, but also delay the peak occurrence time, thereby reducing the impact load on the vehicle, and the two-way jet performance is also better in this regard; with the increase of the jet volume, the growth rate of the relative load reduction efficiency of the two-way jet is not good.

关键词

超空泡航行体 / 头部喷气 / 空泡特性 / 冲击载荷 / 阻力

Key words

Supercavitating vehicle / Head-jetting / Cavity properties / Impact load / Resistance  /

引用本文

导出引用
彭睿哲1, 2, 冯和英1, 向敏2, 侯杰1, 房玲1. 头部喷气式超空泡航行体垂直入水性能研究[J]. 振动与冲击, 2024, 43(20): 238-246
ENG Ruizhe1, 2, FENG Heying1, XIANG Min2, HOU Jie1, FANG Ling1. A study on the vertical water entry performance of a head jet supercavitating navigation body[J]. Journal of Vibration and Shock, 2024, 43(20): 238-246

参考文献

[1] 袁绪龙,栗敏等.跨介质航行器高速入水冲击载荷特性[J].兵工学报,2021,42(07):1440-1449.
[2]钱铖铖.超空泡射弹高速入水数值模拟研究[D].南京理工大学,2019.
[3]鱼怡澜,施瑶,潘光等.超空泡航行体高速入水空泡与载荷特性数值分析[J].西北工业大学学报,2022,40(03):584-591.
[4]陈晨,魏英杰,王聪等.射弹跨声速入水初期阶段多相流场特性数值研究[J].振动与冲击,2019,38(06):46-53+61.
[5]王佳雯,祁晓斌,王瑞等.大尺度航行体跨介质入水弹道特性数值模拟研究[J].战术导弹技术,2023,(03):164-172.
[6]王威,王聪,李聪慧等.周期性阵风流对通气航行体超空泡形态及流体动力特性影响[J].振动与冲击,2019,38(13):208-214.
[7]郭聚,韩建立等. 基于六自由度的空投鱼雷雷伞系统建模仿真研究[J]. 舰船电子工程,2022,42(3):124-128.
[8] Shi Y, Gao X, Pan G. Design and load reduction performance analysis of mitigator of AUV during high speed water entry[J]. Ocean Engineering, 2019, 181: 314-329.
[9]Okada S, Sumi Y. On the water impact and elastic response of a flat plate at small impact angles[J]. Journal of marine science and technology, 2000, 5: 31-39.
[10]张学广,边金尧,方世武.Д形圆柱体大角度撞水载荷计算及缓冲问题的研究[J].中国舰船研究,2007,(05):30-32+41.
[11]张健,尤恽,王珂等.基于气垫效应的二维楔形体入水砰击载荷预报方法研究[J].舰船科学技术,2016,38(03):7-12.
[12]潘龙,王焕然,姚尔人等.头部喷气平头圆柱体人水缓冲机制研究[J].工程热物理学报,2015,36(08):1691-1695.
[13]赵海瑞,施瑶,潘光.头部喷气航行器高速入水空泡特性数值分析[J].西北工业大学学报,2021,39(04):810-817.
[14]Jiang Y, Shao S, Hong J. Experimental investigation of ventilated supercavitation with gas jet cavitator[J]. Physics of Fluids, 2018, 30(1): 012103.
[15] Jiang Y, Bai T, Gao Y. Formation and steady flow characteristics of ventilated supercavity with gas jet cavitator[J]. Ocean Engineering, 2017, 142: 87-93.
[16]刘华坪,余飞鹏,韩冰等.头部喷气影响航行体入水载荷的数值模拟[J].工程热物理学报,2019,40(02):300-305.
[17]邹志辉,李佳,杨茂等.喷气协助航行体入水空泡流动特性实验研究[J].弹道学报,2022,34(01):1-8+97.
[18]王峻,刘珑翔,陈瑛.头部喷气圆柱高速入水空泡与降载特性的数值模拟研究[J].水动力学研究与进展A辑,2023,38(02):195-204.
[19] Shi H H, Itoh M, Takami T. Optical observation of the supercavitation induced by high-speed water entry[J]. J. Fluids Eng., 2000, 122(4): 806-810.
[20]王焕然,王新兵,窝丁日海等.半球头圆柱体穿越气液界面的数值模拟[J].工程热物理学报,2013,34(10):1856-1859.
[21]武书阳.通气超空泡航行体高速入水流动特性研究[D].哈尔滨工业大学,2022.

PDF(1517 KB)

150

Accesses

0

Citation

Detail

段落导航
相关文章

/