波纹消声器声学性能的数值分析及实验

吴太英1, 温华兵1, 潘飞1, 郭俊华1, 申华2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 275-281.

PDF(1964 KB)
PDF(1964 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 275-281.
论文

波纹消声器声学性能的数值分析及实验

  • 吴太英1,温华兵1,潘飞1,郭俊华1,申华2
作者信息 +

Numerical analysis and experiments of the acoustic performance of a corrugated muffler

  • U Taiying1, WEN Huabing1, PAN Fei1, GUO Junhua1, SHEN Hua2
Author information +
文章历史 +

摘要

波纹消声器可实现特定频带上的消声最大化,通过调节不同波纹深度的重新组合获取非规则波纹结构来实现频带上的互补。采用侧支共振腔理论公式计算单波纹传递损失,依据双负载原理搭建实验台测量波纹管声学性能,将理论、实验结果分别与数值预测值进行比较。研究结果表明:波纹深度是影响单波纹共振频率的主要因素;非规则波纹结构传递损失带宽主要受非规则波纹数量、相邻波纹深度差影响;消声腔容积影响有效带宽频率范围。最终优化结果相比常规波纹管,在1000-5000Hz内传递损失均值提升约20.55dB,带宽拓宽约1750Hz。

Abstract

The corrugated muffler can maximize the muffling in specific frequency bands, and the frequency bands are complemented by adjusting the recombination of different corrugation depths to obtain irregular corrugated structures. Calculate the transmission loss of single bellows by using the theoretical formula of side-branch resonance cavity, and measure the acoustic performance of bellows by constructing an experimental bench based on the double-loading principle, compare theoretical and experimental results with numerical predictions. The results showed that the corrugation depth is the main factor affecting the resonance frequency of single corrugated structures; Irregular corrugated structure transfer loss bandwidth is mainly affected by the number of irregular corrugations, the depth difference of adjacent corrugations; The volume of the anechoic chamber affects the effective bandwidth frequency range. The final optimized result improves the mean value of transmission loss by about 20.55 dB in 1000-5000 Hz and broadens the bandwidth by about 1750 Hz compared to the conventional bellows.

关键词

波纹消声器 / 非规则波纹 / 双负载法 / 传递损失 / 带宽

Key words

corrugated muffler / irregular corrugated / two-load method / transmission loss / bandwidth

引用本文

导出引用
吴太英1, 温华兵1, 潘飞1, 郭俊华1, 申华2. 波纹消声器声学性能的数值分析及实验[J]. 振动与冲击, 2024, 43(20): 275-281
U Taiying1, WEN Huabing1, PAN Fei1, GUO Junhua1, SHEN Hua2. Numerical analysis and experiments of the acoustic performance of a corrugated muffler[J]. Journal of Vibration and Shock, 2024, 43(20): 275-281

参考文献

[1] 马正刚. 小长径比穿孔共振腔管道消音器设计及性能研究[D].江苏: 江苏科技大学, 2021.
MA Zheng-gang. Design and performance study of perforated resonators with small aspect ratio[D].Jiangsu: Jiangsu University of Science and Technology, 2021.
[2] 薛飞, 孙蓓蓓, 陈建栋, 等. U型波纹管声学传递损失的数值分析与实验验证[J]. 振动与冲击, 2018, 37(15): 90-96.
XUE Fei, SUN Bei-bei, CHEN Jian-dong, et al. Numerical analysis and test verification for acoustical transmission loss of U-shaped corrugated pipes[J]. Journal of Vibration and Shock, 2018, 37(15): 90-96.
[3] YANG W P, Yatsze C, LI Y. Acoustical performance of a wavy micro-perforated panel absorber[J]. Mechanical Systems and Signal Processing, 2023, 185(15): 109766.
[4] WANG C Q, CHNEG L, PAN J, et al. Sound absorption of a micro-perforated panel backed by an irregular-shaped cavity [J].The Journal of the Acoustical Society of America, 2010, 127(01): 238-246.
[5] WANG C Q, LIU X. Investigation of the acoustic properties of corrugated micro-perforated panel backed by a rigid wall[J]. Mechanical Systems and Signal Processing, 2020, 140: 106699.
[6] 邱纪成, 王晓明, 梅玉林. 有限周期微穿孔波纹板吸声体吸声性能研究[J]. 力学学报, 2023, 55(04): 939-953.
QIU Ji-cheng, WANG Xiao-ming, MEI Yu-lin. Study on the sound absorption characteristics of corrugated micro-perforated panel absorbers with finite sizes[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(04): 939-953.
[7] SADAMOTO A, MURAKAMI Y . Resonant properties of short expansion chambers in a circular duct: including extremely short cases and asymetric mode wave incidence cases[J]. Journal of Sound and Vibration, 2002, 249(01): 165-187.
[8] SADAMOTO A, TSUBAKISHITA Y, MURAKAMI Y. Sound attenuation in circular duct using slit-like short expansion of eccentric and/or serialized configuration[J]. Journal of Sound and Vibration, 2004, 277(4-5): 987-1003.
[9] SADAMOTO A, TSUBAKISHITA Y, MURAKAMI Y. Resonant properties of a short expansion chamber symmetrically located on opposite sides of a rectangular duct[J]. Journal of Environment and Engineering, 2007, 2(03): 558-566.
[10] TRINH V. Tuning acoustic performance of multi-chamber hybrid mufflers[J]. Vietnam Journal of Mechanics, 2021, 43(03): 209-220.
[11] 沈惠杰, 张涛, 汤智胤, 等. 低频消声周期管路设计及其声学性能测试[J]. 振动与冲击, 2022, 41(08): 79-85.
SHEN Hui-jie, ZHANG Tao, TANG Zhi-yin, et al. Design of a low -frequency noise suppression periodic pipe and its acoustic performance test[J]. Journal of Vibration and Shock, 2022, 41(08): 79-85.
[12] GERGES S, JORDAN R, THIEME F, et al. Muffler modeling by transfer matrix method and experimental verification[J]. Journal Of The Brazilian Society Of Mechanical Sciences And Engineering, 2005, XXVII(02): 132-140.
[13] 徐航手, 季振林, 康钟绪. 抗性消声器传递损失预测的三维时域计算方法[J]. 振动与冲击, 2010, 29(04): 107-110.
XU Hang-shou, JI Zhen-lin,KANG Zhong-xu. Three-dimensional time domain computational approach for predicting transmission loss of reactive silencers[J]. Journal of Vibration and Shock, 2010, 29(04): 107-110.
[14] LIU C, JI Z L. Computational fluid dynamics- based numerical analysis of acoustic attenuation and flow resistance characteristics of perforated tube silencers[J]. Journal of Vibration and Acoustics,2014, 136(02): 021006.
[15] ARSLAN H, RANJBAR M, SECGIN E, et al. Theoretical and experimental investigation of acoustic performance of multi-chamber reactive silencers[J]. Applied Acoustics, 2020, 157: 106987.
[16] KANG Z X, JI Z L. Acoustic length correction of duct extension into a cylindrical chamber[J]. Journal of Sound and Vibration, 2008, 310(4-5): 782-791.
[17] 侯九霄, 朱海潮, 毛荣富. 渐变截面背腔微穿孔管消声器声传递特性分析[J]. 振动与冲击, 2019, 38(14): 189-194.
HOU Jiu-xiao, ZHU Hai-chao, MAO Rong-fu. Theoretical analysis on the transmission loss of a micro-perforated tube muffler with gradually changed back cavity [J]. Journal of Vibration and Shock, 2019, 38(14): 189-194.
[18] 李政, 王攀. 带有过渡管的消声器传递损失误差分析及修正[J]. 噪声与振动控制, 2017, 37(3): 193-196.
LI Zheng, WANG Pan. Error analysis and correction of transmission loss of the muffler with a transition pipe[J]. Noise and Vibration Control, 2017, 37(3): 193-196.
[19] LIU C K, WANG H J, LIANG B, et al. Low-frequency and broadband muffler via cascaded labyrinthine metasurfaces[J]. Applied Physics Letters, 2022, 120(23): 1-5.
[20] 毕嵘, 刘正士, 王慧, 等. 多腔共振式消声器的声学特性分析[J]. 农业机械学报, 2008, 39(10): 48-51.
BI Rong, LIU Zheng-shi, WANG Hui, et al. Analysis of acoustical performance of mult-i chamber helmholtz resonators[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(10): 48-51.

PDF(1964 KB)

102

Accesses

0

Citation

Detail

段落导航
相关文章

/