改进型金字塔状夹芯板耦合MAM结构的降噪设计与研究

杨文超1, 杨廷方1, 苏盛1, 谢泽龙1, 何斌1, 易维2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 289-297.

PDF(1765 KB)
PDF(1765 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 289-297.
论文

改进型金字塔状夹芯板耦合MAM结构的降噪设计与研究

  • 杨文超1,杨廷方1,苏盛1,谢泽龙1,何斌1,易维2
作者信息 +

Noise reduction design and research of an improved pyramidal sandwich plate coupled membrane-type acoustic metamaterial structure

  • YANG Wenchao1, YANG Tingfang1, SU Sheng1, XIE Zelong1, HE Bin1, YI Wei2 
Author information +
文章历史 +

摘要

为解决薄膜型声学超材料(Membrane-type acoustic metamaterial, MAM)低频区间隔声频段较窄、耐久性差以及抗风险能力弱的问题,探讨MAM在变压器降噪领域的应用, 现设计出一种金字塔状夹芯板和MAM耦合的降噪结构。采用有限元法研究耦合结构的隔声性能和声振特性,建立结构的声固耦合模型,分析结构的声传递损失和振动模态,并探究影响结构降噪的因素。研究表明,耦合结构有着优秀的中低频宽带隔声特性,且可以通过调整薄膜和薄板的参数改变结构的隔声特性。优化后的结构在110kV变压器主噪声频点上的隔声量均能超过110dB。

Abstract

In order to solve the problems of narrow sound insulation band in low frequency range, poor durability and weak risk resistance of membrane-type acoustic metamaterial (MAM), and to explore the application of MAM in the transformer noise reduction field, a noise reduction structure coupled with pyramid sandwich panel and MAM is designed. By the finite element method, the sound insulation performance of the coupled structure and its acoustic and vibration characteristics are studied, the sound solid coupling model of the structure is established, the sound transmission loss and vibration mode of the structure are analyzed, and the factors affecting the noise reduction of the structure are explored. The results show that the coupling structure has excellent broadband sound insulation characteristics in low and medium frequency, and the sound insulation characteristics of the structure can be changed by adjusting the parameters of the membrane and the plate. The sound insulation of the optimized structure at the main noise frequency of the 110kV transformer can exceed that of 110dB.

关键词

薄膜型声学超材料 / 夹芯板 / 有限元法 / 隔声特性 / 变压器

Key words

membrane-type acoustic metamaterial / sandwich plate / finite element method / sound insulation characteristics / transformer

引用本文

导出引用
杨文超1, 杨廷方1, 苏盛1, 谢泽龙1, 何斌1, 易维2. 改进型金字塔状夹芯板耦合MAM结构的降噪设计与研究[J]. 振动与冲击, 2024, 43(20): 289-297
YANG Wenchao1, YANG Tingfang1, SU Sheng1, XIE Zelong1, HE Bin1, YI Wei2 . Noise reduction design and research of an improved pyramidal sandwich plate coupled membrane-type acoustic metamaterial structure[J]. Journal of Vibration and Shock, 2024, 43(20): 289-297

参考文献

[1] 吴文庚,陈冰斌,高栩,等. 10 kV/380 kV(硅钢片铁芯)变压器振动噪声特性及隔振设计[J]. 噪声与振动控制,2023, 43(01): 270-274.
WU Wen-geng, CHEN Bing-bin, GAO Xu, et al. Noise and Vibration Features and Vibration Control of a 10 kV/380 kV Transformer with Silicon Steel Sheet Core[J]. Noise and Vibration Control, 2023, 43(01): 270-274.
[2] 汲胜昌,师愉航,张凡,等. 电力变压器振动与噪声及其控制措施研究现状与展望[J].高压电器,2019,55(11):1-17.
JI Sheng-chan, SHI Yu-hang, ZHANG Fan,et al. Review on Vibration and Noise of Power Transformer and Its Control Measures [J]. High Voltage Apparatus, 2019, 55(11): 1-17.
[3] 李彩莲,刘国强,陈海燕,等. 基于偶极等效声源的特高压变压器有源降噪方法研究[J].电工技术学报,2018, 33(S1): 221-226.
LI Cai-lian, LIU Guo-qiang, CHEN Hai-yan, et al. Research on Active Noise Reduction of Ultra High Voltage Transformer Based on Dipole Equivalent Acoustic Source[J]. Transactions of China Electrotechnical Society, 2018, 33(S1): 221-226.
[4] YANG Z, MEI J, YANG M, et al. Membrane-type acoustic metamaterial with negative dynamic mass[J]. Physical Review Letters, 2008, 101(20): 204301.
[5] SUI N, YAN X, HUANG T Y, et al. A lightweight yet sound-proof honeycomb acoustic metamaterial[J]. Applied Physics Letters, 2015, 106: 171905.
[6] 叶超, 苏继龙. 薄膜型声学超材料微结构参数对其隔声性能的影响[J]. 噪声与振动控制,2017, 37(1): 163–166.
YE Chao, SU Ji-long. Influence of micro structural parameters on sound insulation performance of membrane-type acoustic metamaterials[J]. Noise and Vibration Control, 2017, 37(1): 163–166.
[7] Samir Assaf. Numerical prediction of noise transmission loss through viscoelastically damped sandwich plates[J]. Journal of Sandwich Structures and Materials, 2008: 359-384.
[8] 任树伟,辛锋先,卢天建. 蜂窝层芯夹层板结构振动与传声特性研究[J]. 力学学报,2013 45(3):349-358.
REN Shu-wei, XIN Feng-xian, LU Tian-jian. Vibroacoustic performance of simply supported honeycomb sandwich panels[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013 45(3):349-358.
[9] WANG Dong-wei, MA Li. Sound transmission loss of laminated composite sandwich structures with pyramidal truss cores[J]. Composite Structures, 2019, 220: 19-30
[10] WANG Dong-wei, MA Li. Sound transmission loss of sandwich plate with pyramidal truss cores[J]. Journal of Sandwich Structures and Materials, 2020 22(3):551-571
[11] 王东炜. 轻质点阵夹芯结构的声学性能研究[D].哈尔滨工业大学,2021.
WANG Dong-wei. Research on acoustic properties of lightweight lattice sandwich structure[D]. Harbin Institute of Technology, 2021.
[12] 孟飞,张程,郭添亨,等. 城市变电站噪声污染防治研究[J],高电压技术, 2023, 49(S1): 186-189.
MENG Fei, ZHANG Cheng, GUO Tian-heng, et al. Research on noise pollution control of urban substation, High Voltage Engineering, 2023, 49(S1): 186-189.
[13] 钟思翀,祝丽花,王前超,等. 电力变压器振动噪声分析及其有源降噪[J]. 电工技术学报,2022, 37(S1): 11-21. 
ZHONG Si-chong, ZHU Li-hua, WANG Qian-chao, et al. Electromagnetic Vibration of Power Transformer and Active Noise Reduction[J]. Transactions of China Electrotechnical Society,2022, 37(S1): 11-21. 
[14] 张欣,宋子晗,王文斌,等. 基于负磁致伸缩效应的电机降噪方法研究[J].振动与冲击,2022, 41(07): 81-87.
ZHANG Xin, SONG Zi-han, WANG Wen-bin, et al. Noise reduction method of motor based on negative magnetostrictive effect[J]. Journal of Vibration and Shock, 2022, 41(07): 81-87.
[15] 王栋,詹振宇,王伟,等. 换流变压器振动噪声问题研究综述[J]. 电工电能新技术,2022, 41(11): 28-42.
WANG Dong, ZHAN Zhen-yu, WANG Wei, et al. Review on vibration and noise of converter transformer[J]. Advanced Technology of Electrical Engineering and Energy, 2022, 41(11): 28-42.
[16] 杜功焕,朱哲民,龚秀芬. 声学基础[M]. 第2版. 南京:南京大学出版社,2001.
DU Gong-huan, ZHU Zhe-min, GONG Xiu-fen. Fundamentals of acoustics[M]. 2nd Ed. Nanjing: Nanjing University Press, 2001.
[17] 陈婷婷,刘杰,谭栋国,等. 金字塔型空心点阵结构的隔声特性研究[J]. 振动与冲击,2017, 36(23): 209-215+231.
CHEN Ting-ting, LIU Jie, TAN Dong-guo, et al. Sound insulation performance of pyramidal hollow lattice structures[J]. Journal of Vibration and Shock, 2017, 36(23): 209-215+231.
[18] 陈婷婷. 金字塔型空心点阵结构的隔声特性探讨与优化设计[D]. 湖南大学, 2019.
CHEN Ting-ting. Sound insulation performance analysis and optimization design of pyramid lattice structure with hollow trusses[D]. Hunan University, 2019
[19] 陈馨蕊,郝志勇,杨陈,等. 结构-声耦合法在汽车仪表板隔声性能仿真分析中的应用[J]. 振动与冲击,2009, 28(08): 154-157+206.
CHEN Xin-rui, HAO Zhi-yong, YANG Chen, et al. Simulation on sound insulation performance analysis of automotive dash by using structure-sound interaction method[J]. Journal of Vibration and Shock, 2009, 28(08): 154-157+206.
[20] 王长凯,陈煊,程礼,等. 3003H18铝合金蜂窝夹芯板超声疲劳试验研究[J]. 振动与冲击,2021, 40(18): 174-182+314.
WANG Chang-kai, CHEN Xuan, CHENG Li, et al. Ultrasonic fatigue test of a 3003H18 aluminum honeycomb sandwich panel[J]. Journal of Vibration and Shock, 2021, 40(18): 174-182+314.
[21] 张超,张军. 碳纤维铝蜂窝夹芯复合结构隔声性能研究[J]. 振动与冲击,2020, 39(12): 265-271.
ZHANG Chao, ZHANG Jun. A study on sound insulation for sandwich structures with carbon fiber panel and aluminum honeycomb core[J]. Journal of Vibration and Shock, 2020, 39(12): 265-271.
[22] 张雨,李应刚,沈云龙,等. 蜂窝金属夹芯板重复冲击动态响应研究[J]. 振动与冲击,2021, 40(04): 255-260.
ZHANG Yu, LI Ying-gang, SHEN Yun-long, et al. Dynamic responses of honeycomb sandwich panels under repeated impacts[J]. Journal of Vibration and Shock, 2021, 40(04): 255-260.
[23] 周国建,吴九汇,路宽,等. 多态反共振协同型薄膜声学超材料低频隔声性能[J]. 西安交通大学学报,2020, 54(01): 64-74.
ZHOU Guo-jian, WU Jiu-hui, LU Kuan, et al. Low-Frequency Sound Insulation Performance of Membrane-Type Acoustic Metamaterials with Multi-State Anti-Resonance Synergy[J]. Journal of Xi’an Jiaotong University, 2020, 54(1): 64–74.
[24] 安宝. 薄膜型声学超材料结构设计及隔声特性研究[D]. 石家庄铁道大学, 2023.
AN Bao. Structural design and sound insulation performance of membrane acoustic metamaterials[D]. Shijiazhuang Tiedao University, 2023
[25] 王亚琴,徐晓美,林萍. 薄膜型声学超材料的结构设计与隔声特性[J]. 应用声学,2022, 41(06): 875-883.
WANG Ya-qin, XU Xiao-mei, LIN Ping. Structural design and sound insulation characteristics of the membrane-type acoustic metamaterial [J]. Journal of Applied Acoustics, 2022, 41(06): 875-883.

PDF(1765 KB)

195

Accesses

0

Citation

Detail

段落导航
相关文章

/