直线电机式主动悬架结构优化与控制仿真研究

韦伟, 李保佐, 于松建

振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 305-317.

PDF(3091 KB)
PDF(3091 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 305-317.
论文

直线电机式主动悬架结构优化与控制仿真研究

  • 韦伟,李保佐,于松建
作者信息 +

Research on structure optimization and control simulation of linear motor active suspension

  • WEI Wei, LI Baozuo, YU Songjian
Author information +
文章历史 +

摘要

为了弥补汽车被动悬架没有主动控制力的缺陷,设计了一种基于传统被动悬架结构的直线电机式主动悬架。在被动悬架中加入直线电机,可以增加主动悬架的阻尼力,降低汽车的振动。首先,对直线电机的结构进行设计,其次,运用Ansys/Maxwell磁场分析软件和控制变量法,优化直线电机各部分结构尺寸参数,结果表明:直线电机电磁推力的波动降低了83%,同时稳态推力提升了10%。最后,在Matlab/Simulink中搭建直线电机式主动悬架的仿真模型,使用模糊PID对直线电机式主动悬架系统进行控制,分别在时域和频域进行分析,结果表明:相较于被动悬架,直线电机式主动悬架的车身加速度、悬架动挠度、轮胎动载荷都得到了有效抑制,车身加速度功率谱密度也有了大幅度的降低,有效地提高了车辆平顺性和操纵稳定性。

Abstract

In order to compensate for the lack of active control force in the passive suspension of automobiles, a linear motor type active suspension based on the traditional passive suspension structure was designed. Adding linear motors to the passive suspension can increase the damping force of the active suspension and reduce the vibration of the vehicle. Firstly, the structure of the linear motor was designed. Secondly, Ansys/Maxwell magnetic field analysis software and control variable method were used to optimize the structural dimension parameters of each part of the linear motor. The results showed that the fluctuation of electromagnetic thrust of the linear motor was reduced by 83%, while the steady thrust was increased by 10%. Finally, the simulation model of linear motor active suspension is built in Matlab/Simulink, and fuzzy PID is used to control the linear motor active suspension system. The analysis is carried out in time domain and frequency domain respectively. The results show that: Compared with the passive suspension, the body acceleration, suspension dynamic deflection and tire dynamic load of the linear motor active suspension are effectively inhibited, and the power spectral density of the body acceleration is also greatly reduced, which effectively improves the ride comfort and handling stability of the vehicle.

关键词

主动悬架;直线电机;结构优化;矢量控制;模糊PID  /

Key words

active suspension / linear motor / structure optimization / vector control / fuzzy PID

引用本文

导出引用
韦伟, 李保佐, 于松建. 直线电机式主动悬架结构优化与控制仿真研究[J]. 振动与冲击, 2024, 43(20): 305-317
WEI Wei, LI Baozuo, YU Songjian. Research on structure optimization and control simulation of linear motor active suspension[J]. Journal of Vibration and Shock, 2024, 43(20): 305-317

参考文献

[1] 喻凡,张勇超,张国光.车辆电磁悬架技术综述[J]. 汽车工程,2012,34(07):569-574.
Yu Fan, Zhang Yongchao, Zhang Guoguang. Review on Vehicle Electromagnetic Suspension Technology[J]. Automotive Engineering, 2012,34(07):569-574.
[2] 于学斌,陈佳兴,周冉等.直线电机式悬架参数对馈能特性影响分析[J].沈阳工业大学学报,2023,45(04):428-435. 
Yu Xuebin, Chen Jiaxing, Zhou Ran, et al. Influence analysis of linear motor type suspension parameters on energy-harvesting characteristics[J]. Journal of Shenyang University of Technology, 2023,45(04):428-435.
[3] 李以农,朱哲葳,郑玲,等.基于路面识别的主动馈能悬架多目标控制与优化[J]. 交通运输工程学报,2021,21(02):129-137.
Li Yinong, Zhu Zhewei, Zheng Ling, et al. Multi-objective control and optimization of active energy-regenerative suspension based on road recognition [J]. Journal of Traffic and Transportation Engineering, 2021,21(02):129-137.
[4] Ding R, Wang R, Meng X, et al. Energy consumption sensitivity analysis and energy-reduction control of hybrid electromagnetic active suspension[J]. Mechanical Systems and Signal Processing(S0888-3270), 2019, 134: 106301.
[5] 邹一楠.电磁馈能悬架作动器设计[J].汽车实用技术,2021,46(03):48-50.
Zou Yinan. Design of Electromagnetic Feeder Suspension Actuator[J]. Automobile Applied Technology, 2021,46(03):48-50.
[6] 寇发荣,方涛,任全等.直线电机式主动悬架内外环控制研究[J].系统仿真学报,2018,30(07):2615-2621.
Kou Farong, Fang Tao,Ren Quan, et al. Research on Inner and Outer Loop Control of Active Suspension with Linear Motor[J]. Journal of System Simulation, 2018,30(07):2615-2621.
[7] 寇发荣,张宏,李阳康等.电磁直线式主动悬架作动器参数的多目标粒子群优化[J].振动与冲击,2021,40(22):128-137.
Kou Farong, Zhang Hong, Li Kangyang, et al. Multi-obiective particle swarm optimization for the actuator parameters of an electromagnetic linear active suspension[J]. Journal of Vibration and Shock, 2021,40(22):128-137.
[8] Sun X, Hu C, Lei G, et al. State feedback control for a PM hub motor based on gray wolf optimization algorithm[J]. IEEE Transactions on Power Electronics(S0885-8993), 2019, 35(1): 1136-1146.
[9] 郭全民,张豪文,王言.汽车半主动悬架整车协调控制策略[J].系统仿真学报,2020,32(04):700-708.
Guo Quanmin, Zhang Haowen, Wang Yan. Vehicle Coordination Strategy for Semi-active Suspension Vehicles[J]. Journal of System Simulation, 2020,32(04):700-708.
[10] 秦博男,杨珏,罗维东,等.一种新型液电式互联馈能悬架的特性分析[J]. 工程科学学报,2022,44(12):2154-2163.
Qin Bonan, Yang Yu, Luo Weidong, et al. Characteristic analysis of a novel energy-harvesting hydraulically-interconnected suspension[J]. Chinese Journal of Engineering, 2022,44(12):2154-2163.
[11] Kim J H, Shin Y J, Chun Y D, et al. Design of 100W regenerative vehicle suspension to harvest energy from road surfaces[J]. International Journal of Precision Engineering and Manufacturing(S2234-7593), 2018, 19: 1089-1096.
[12] 汪若尘,余未,丁仁凯,等.混合励磁悬架减振器结构设计与优化[J]. 汽车工程学报,2016,6(06):404-411.
Wang Ruochen, Yu Wei, Ding Renkai, et al. Structural Design and Optimization of Hybrid Excitation Suspension Damper[J]. Journal of Automotive Engineering, 2016,6(06):404-411.
[13] 季云华,汪若尘,丁仁凯,等.带主动横向稳定杆的混合电磁悬架性能研究[J]. 机械设计与制造,2020,No.353(07):219-223+228.
Ji Yunhua, Wang Ruochen, Ding Renkai, et al. Study on Performance of Hybrid Electromagnetic Suspension with Active Roll Stabilizer[J]. MACHINERY DESIGN & MANUFACTURE, 2020,No.353(07):219-223+228.
[14] 卢小凯,王念先.基于直线电机非线性的主动悬架减振性能研究[J]. 机床与液压,2023,51(04):42-47.
Lu Xiaokai, Wang Nianxian. Research on the Damping Performance of Active Suspension Based on Actuator Nonlinearity[J]. Machine Tool & Hydraulics, 2023,51(04):42-47.
[15] 寇发荣,武江浩,许家楠,等.整车电磁混合主动悬架故障诊断与容错控制研究[J]. 振动与冲击,2022,41(04):101-109.
Kou Farong, Wu Jianghao, Xu Jianan, et al. A study on fault diagnosis and fault tolerant control of vehicle electromagnetic hybrid active suspension[J]. Journal of Vibration and Shock, 2022,41(04):101-109.
[16] 何毅. 电磁馈能悬架的智能切换控制策略研究[D]. 重庆:重庆大学,2018.
He Yi. Research on intelligent switching control strategy of electromagnetic energy feedback suspension[D]. Chongqing: Chongqing University, 2018.

PDF(3091 KB)

Accesses

Citation

Detail

段落导航
相关文章

/