基于全局灵敏度的高效一体式隔振超结构不确定性分析

王东贤, 赵建雷, 赵伟佳, 朱睿

振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 334-342.

PDF(1233 KB)
PDF(1233 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 334-342.
论文

基于全局灵敏度的高效一体式隔振超结构不确定性分析

  • 王东贤,赵建雷,赵伟佳,朱睿
作者信息 +

Highly efficient uncertainty analysis of an integrated vibration-isolating metastructure based on global sensitivity

  • WANG Dongxian, ZHAO Jianlei, ZHAO Weijia, ZHU Rui
Author information +
文章历史 +

摘要

以控制力矩陀螺(CMG)等为代表的航天器执行机构能产生微扰振,后者直接影响光学载荷的成像精度和航天器关键部件的寿命,从而降低航天器的核心性能。一体式隔振超结构展现出了优异的隔振性能,但是由制造误差带来的几何不确定性会影响其隔振频带和隔振效果。本文提出一种基于全局灵敏度的高效不确定性分析方法,能够在隔振超结构设计过程中准确地量化由制造误差带来的隔振性能偏差。首先,将高阶的稀疏点区间切比雪夫多项式展开(HOSPSCPE)与基于方差的Sobol’灵敏度指数相结合得到一种高效的全局灵敏度分析方法。该方法与传统蒙特卡洛(MCM)灵敏度分析方法相比计算效率提高了三个数量级。其次,通过忽略全局灵敏度指数较小的区间变量,大大减少了由复杂单元组成的超结构不确定性分析的工作量。最后,我们进行了不确定性灵敏度分析方法的实验验证。结果表明,我们所提出的基于全局灵敏度的不确定性分析方法可为隔振超结构的设计与制造提供高效指导。

Abstract

Spacecraft actuators like Control Moment Gyroscopes (CMGs) can generate micro-vibrations, which directly affect the imaging quality of the space optical instruments and even the lifespan of key components of the spacecraft. Eventually, the key performance of the spacecraft can be affected. Although the integrated metastructure exhibits excellent vibration isolation ability, the manufacturing uncertainty on the complex geometry can affect the overall vibration isolation performance. In this paper, an efficient uncertainty analysis method based on global sensitivity is proposed, which can accurately quantify the vibration isolation performance deviation caused by the manufacturing uncertainty. First, an efficient global sensitivity analysis method is proposed by combining high-order sparse point interval Chebyshev polynomial expansion (HOSPSCPE) with variance based Sobol's sensitivity index. Comparing with the traditional Monte Carlo (MCM) sensitivity analysis methods, this method improves computational efficiency by three orders of magnitude. Second, by ignoring the interval variables with smaller global sensitivity indices, the efficiency of the uncertainty analysis for complex metastructures can be further enhanced. Finally, experimental validations are carrying out. The results indicate that our proposed uncertainty analysis method based on global sensitivity can provide useful and efficient guidance for the design and manufacturing of vibration-isolating metastructures.

关键词

隔振超结构 / 不确定性分析 / 全局灵敏度分析 / 切比雪夫多项式 / 增材制造

Key words

vibration-isolating metastructure / uncertainty analysis / global sensitivity analysis / chebyshev polynomials / additive manufacturing

引用本文

导出引用
王东贤, 赵建雷, 赵伟佳, 朱睿. 基于全局灵敏度的高效一体式隔振超结构不确定性分析[J]. 振动与冲击, 2024, 43(20): 334-342
WANG Dongxian, ZHAO Jianlei, ZHAO Weijia, ZHU Rui. Highly efficient uncertainty analysis of an integrated vibration-isolating metastructure based on global sensitivity[J]. Journal of Vibration and Shock, 2024, 43(20): 334-342

参考文献

[1]  ZHAO X X, WANG Z K, ZHENG G T. Policy optimization for vibration isolator stiffness control during agile attitude maneuvers[J]. Mechanical Systems and Signal Processing, 2022, 165: 108279.
[2]  TESHIMA Y, IWASAKI A. Correction of attitude fluctuation of Terra spacecraft using ASTER/SWIR imagery with parallax observation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 46(1): 222-227
[3]  LUO Q, LI D X, ZHOU W Y, et al. Dynamic modelling and observation of micro-vibrations generated by a Single Gimbal Control Moment Gyro[J]. Journal of Sound and Vibration, 2013, 332(19): 4496-4516.
[4]  ZHANG Y, ZANG Y, LI M, et al. Active-passive integrated vibration control for control moment gyros and its application to satellites[J]. Journal of Sound and Vibration, 2017, 394: 1-14.
[5]  CHEN S B, XUAN M, XIN J, et al. Design and experiment of dual micro-vibration isolation system for optical satellite flywheel[J]. International Journal of Mechanical Sciences, 2020, 179: 105592
[6]  魏展基.航天器控制力矩陀螺微振动隔振方法研究.[D].长沙: 国防科技大学,2017. 
[7]  KATSAMAKAS A A, BELSE G, VASSILIOU M F, et al. Shake-table testing of low-cost seismic isolation bearings based on rolling rubber spheres[C]. International Conference on Natural Hazards & Infrastructure 2022.
[8]  YAN B, YU N, WANG Z H, et al. Lever-type quasi-zero stiffness vibration isolator with magnetic spring[J]. Journal of Sound and Vibration, 2022, 527: 116865.
[9]  CHAI, Y Y, JING X J, CHAO X. X-shaped mechanism based enhanced tunable QZS property for passive vibration isolation[J]. International Journal of Mechanical Sciences, 2022, 218, 107077.
[10]  ZHOU J X, XU D L, Bishop S. A torsion quasi-zero stiffness vibration isolator. Journal of Sound and Vibration[J], 2015, 338: 121-133.
[11]  ZHAO J L, ZHOU G, ZHANG D Z, et al. Integrated design of a lightweight metastructure for broadband vibration isolation[J]. International Journal of Mechanical Sciences, 2023, 244: 108069.
[12]  ZHANG Q, GUO D K, HU G K. Tailored mechanical metamaterials with programmable quasi-zero-stiffness features for full-band vibration isolation[J]. Advanced Functional Materials, 2021, 31(33): 2101428.
[13]  WNAG K, ZHOU J X, XU D L. Sensitivity analysis of para metric errors on the performance of a torsion quasi-zero-stiffness vibration isolator[J]. International Journal of Mechanical Sciences, 2017, 134: 336-346.
[14]  向育佳,史治宇,冯雪磊.参数不确定性内声场分析的封闭区间有限元方法[J].振动与冲击,2022,41(18):25-32. 
Xiang Yujia, Shi Zhiyu, Feng Xielei. Enclosing interval finite-element method for the analysis of the interior-acoustic field with parametric uncertainty[J]. Journal of Vibration and Shock,2022,41(18):25-32.
[15]  ZHANG H, MULLEN R L, MUHANNA R L. Interval Monte Carlo methods for structural reliability. Structural Safety, 2010, 32(3): 183-190
[16]  JIANG Z Y, HUANG X Z, CHNAG M X, et al. Thermal error prediction and reliability sensitivity analysis of motorized spindle based on Kriging model[J]. Engineering Failure Analysis, 2021, 127: 105558.
[17]  蒋鑫, 白争锋, 宁志远等.基于信号分解和切比雪夫多项式的多体系统区间不确定性分析方法.力学学报, 2022, 54(6):1694-1705.
Jiang Xin, Bai Zhengfeng, Ning Zhiyuan, et al. Interval uncertainty analysis methods for multibody systems based on signal decomposition and Chebyshev polynomials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1694-1705.
[18]  朱大鹏,魏洁.包装件振动可靠性的不确定度量化及灵敏度分析[J].振动与冲击,2021,40(03):204-211. 
Zhu Dapeng, Wei Jie. Uncertainty quantification and sensitivity analysis of package vibration reliability[J]. Journal of Vibration and Shock ,2021,40(03):204-211.
[19]  WU J L, LUO Z, ZHENG J, et al. Incremental modeling of a new high-order polynomial surrogate model[J]. Applied Mathematical Modelling,2016, 40(7-8): 4681-4699.
[20]  XIE L X, LIU J, HUANG GL, et al. A polynomial-based method for topology optimization of phononic crystals with unknown but bounded parameters[J]. International Journal For Numeriacal Methods In Engineering, 2018,114: 777–800.
[21]  CAO L X, LIU J, JIANG C, et al. Optimal sparse polynomial chaos expansion for arbitrary probability distribution and its application on global sensitivity analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2022,399:115368.
[22]  陈志远,李璐祎.参数不确定性下高效的可靠性灵敏度分析方法[J].航空学报,2022,43(09):542-560.(Chen ZY, Li LW. Efficient methods for reliability sensitivity analysis of inputs with distribution parameter uncertainty. Acta Aeronautica et Astronautica Sinica,2022, 43(09): 542-560(in Chinese))
[23]  SOBLO I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and computers in simulation, 2001, 55(1-3): 271-280.
[24]  SOBOL I M. On sensitivity estimation for nonlinear mathematical models[J]. Matematicheskoe modelirovanie, 1990, 2(1): 112-118.
[25]  BLATAMAN G, SUDRET B. Efficient computation of global sensitivity indices using sparse polynomial chaos expansions[J]. Reliability Engineering & System Safety, 2010, 95(11): 1216-1229.
[26]  赵伟佳,王倚天,朱睿等.轻质嵌入式超结构的低频抑振研究[J].中国科学:物理学 力学 天文学,2020,50(09):162-175 Zhao Weijia, Wang Yitian, Zhu Rui, et al. Isolating low-frequency vibration via lightweight embedded metastructures[J]. Scientia sinica Physica, Mechanica & Astronomica, 2020,50(09):162-175 .
[27]  WANG D X, ZHAO J L, MA Q, et al. Uncertainty analysis of quasi-zero stiffness metastructure for vibration isolation performance[J]. Frontiers in Physics, 2022: 868.
[28]  CHENG K, LU Z Z, WEI Y H, et al. Mixed kernel function support vector regression for global sensitivity analysis[J]. Mechanical Systems and Signal Processing, 2017, 96: 201-214.
[29]  NAESS A, GAIDAI O. Monte Carlo methods for estimating the extreme response of dynamical systems[J]. Journal of Engineering Mechanics, 2008,134 (8):628-636.
[30]  李猛,王时龙,马驰等.基于齿面位姿-几何误差模型的大规格滚齿机关键误差识别[J].中国机械工程,2023,34(05):533-542.
Li Meng, Wang Shilong, Ma Chi, et al. Identification of key errors for large-sized gear hobbing machines based on t

PDF(1233 KB)

136

Accesses

0

Citation

Detail

段落导航
相关文章

/