顶部水平撞击作用下钢墩柱等效碰撞力研究

杨孟刚1, 2, 张宇1, 2, 孟栋梁1, 2, 胡尚韬1, 2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 35-44.

PDF(2647 KB)
PDF(2647 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 35-44.
论文

顶部水平撞击作用下钢墩柱等效碰撞力研究

  • 杨孟刚1,2,张宇1,2,孟栋梁1,2,胡尚韬1,2
作者信息 +

Research on the equivalent impact force for steel columns under horizontal impact at column top

  • YANG Menggang1,2,ZHANG Yu1,2,MENG Dongliang1,2,HU Shangtao1,2
Author information +
文章历史 +

摘要

通过对钢墩柱的水平撞击试验,探讨了撞击质量和速度对碰撞响应的影响;基于ABAQUS/Explicit有限元模拟,进一步探究了试件长细比、锤头材质及轴压比对试件动力响应的影响规律。在上述基础上,基于能量原理,提出了一种计算水平撞击作用下钢墩柱等效碰撞力的方法。结果表明:碰撞力随撞击质量和速度增加而增大,且受撞击速度的影响更显著;随试件长细比减小,碰撞力峰值增大,墩顶位移减小;较小的轴压力有利于提高试件的抗撞击能力。试件在铝制和钢制锤头撞击下的动力响应相似,相比而言,在橡胶锤头撞击下响应明显减小。将本文方法计算的等效碰撞力以拟静力的方式施加于墩柱,得到的墩柱应变与位移等响应与撞击作用下的响应峰值误差在15%以内。

Abstract

By conducting impact tests on a steel column specimen, the influences of impact mass and velocity on the impact responses were explored. Numerical simulation of the impact test was carried out based on ABAQUS/Explicit, furthermore, the effects of specimen slenderness ratio, hammer material and axial compression ratio on the dynamic response of the specimen due to impact loading were investigated. Based on the energy principle, a method for calculating the equivalent impact force for steel columns under horizontal impact was proposed. The results show that the impact force increases with the impact mass and velocity, and is more significantly affected by the impact velocity. With the decrease in specimen slenderness ratio, the peak impact force increases while the displacement decreases; a smaller axial pressure is beneficial for reducing the dynamic response of the specimen. The dynamic responses of the specimen under the impact of the aluminum hammer are similar to that of the steel hammer. In comparison, the responses under the impact of the rubber hammer are greatly reduced. When applying the equivalent impact force obtained by the proposed method to the impact position of the column, the errors of the calculated maximum responses such as strain and displacement of the column are within 15% compared to the corresponding responses under impact. 

关键词

钢墩柱 / 水平撞击 / 动力响应 / 等效碰撞力

Key words

steel columns / horizontal impact / dynamic response / equivalent impact force

引用本文

导出引用
杨孟刚1, 2, 张宇1, 2, 孟栋梁1, 2, 胡尚韬1, 2. 顶部水平撞击作用下钢墩柱等效碰撞力研究[J]. 振动与冲击, 2024, 43(20): 35-44
YANG Menggang1, 2, ZHANG Yu1, 2, MENG Dongliang1, 2, HU Shangtao1, 2. Research on the equivalent impact force for steel columns under horizontal impact at column top[J]. Journal of Vibration and Shock, 2024, 43(20): 35-44

参考文献

[1] 刘占辉, 卢治谋, 张锐, 等. 桥梁撞击问题2020年度研究进展 [J]. 土木与环境工程学报(中英文), 2021, 43(S1): 242-251.
LIU Zhanhui, LU Zhimou, ZHANG Rui, et al. State-of-the-art review of bridge impact research in 2020 [J]. Journal of Civil and Environmental Engineering, 2021, 43(S1): 242-251.
[2] MENG Dongliang, LIU Qi, YANG Menggang, et al. Seismic vulnerability of simply-supported bridges considering link-slabs in the continuous deck and pounding [J]. Structure and Infrastructure Engineering, 2022. DOI: 10.1080/15732479.2022.2033279.
[3] MENG Dongliang, YANG Menggang, YANG Ziqi, et al. Effect of earthquake-induced transverse poundings on a 32m span railway bridge isolated by friction pendulum bearings [J]. Engineering Structures, 2022, 251: 113538.
[4] YANG Menggang, MENG Dongliang, GAO Qiong, et al. Experimental study on transverse pounding reduction of a high-speed railway simply-supported girder bridge using rubber bumpers subjected to earthquake excitations [J]. Engineering Structures, 2019, 196: 109290.
[5] 孟栋梁, 杨孟刚, 费凡. 碰撞对高铁简支桥梁横向地震响应影响的振动台试验研究 [J]. 工程力学, 2019, 36(08): 161−170.
MENG Dongliang, YANG Menggang, FEI Fan. Shake-table tests on the influence of the pounding on transverse seismic responses of high-speed railway simply-supported bridges [J]. Engineering Mechanics, 2019, 36(08): 161−170.
[6] 梅雪峰, 胡卸文, 罗刚等. 基于弹塑性理论的落石碰撞恢复系数和峰值冲击力研究 [J]. 振动与冲击, 2019, 38(08): 14-20.
MEI Xuefeng, HU Xiewen, LUO Gang, et al. A study on the coefficient of restitution and peak impact of rockfall based on the elastic-plastic theory [J]. Journal of Vibration and Shock, 2019, 38(08): 14-20.
[7] 张于晔, 李清华, 樊伟等. 车辆撞击下预制节段拼装桥墩的损伤分析与评估 [J]. 振动与冲击, 2022, 41(24): 150-158+209. 
ZHANG Yuye, LI Qinghua, FAN Wei, et al. Damage analysis and assessment of precast segmental columns subjected to vehicle collision [J]. Journal of Vibration and Shock, 2022, 41(24): 150-158+209.
[8] 陈天黎, 吴昊, 方秦. 驳船撞击作用下双柱式桥梁的动力行为分析 [J]. 振动与冲击, 2023, 42(20): 158-171. 
CHEN Tianli, WU Hao, FANG Qin. Dynamic behaviors of double-column RC bridge under barge impact [J]. Journal of Vibration and Shock, 2023, 42(20): 158-171.
[9] KISHI N, MIKAMI H. Empirical formulas for designing reinforced concrete beams under impact loading [J]. ACI Structural Journal, 2012, 109(4): 509.
[10] LIU Bin, FAN Wei, Guo Wei, et al. Experimental investigation and improved FE modeling of axially-loaded circular RC columns under lateral impact loading [J]. Engineering Structures, 2019, 195: 22-50.
[11] FAN Wei, LIU Bin, HUANG Xu, et al. Efficient modeling of flexural and shear behaviors in reinforced concrete beams and columns subjected to low-velocity impact loading [J]. Engineering Structures, 2019, 191: 509-525.
[12] 王路明, 刘艳辉, 赵世春, 等. 侧向低速冲击作用下钢管混凝土构件开裂评估模型及影响因素研究 [J]. 土木工程学报, 2022, 55(03): 7-17.
WANG Luming, LIU Yanhui, ZHAO Shichun, et al. Study on evaluation model and influencing factors for cracking of concrete-filled steeltubular members subjected to lateral low-velocity impact [J]. China Civil Engineering Journal, 2022, 55(03): 7-17.
[13] ZHU Xiang. Experimental study of RC columns and composite columns under low-velocity impact [J]. Thin-Walled Structures, 2020, 160: 107374.
[14] MOHAMMAD Y, Brian U, ZHONG Tao, et al. Impact behaviour of pre-compressed hollow and concrete filled mild and stainless steel columns [J]. Steel Construction, 2014, 96(05): 54-68.
[15] 孟栋梁, 胡仁康, 杨孟刚, 等. 墩顶撞击作用下高铁桥墩动力行为研究 [J/OL]. 土木工程学报, 2023. DOI: 10.15951/j.tmgcxb.23070569.
MENG Dongliang, HU Renkang, YANG Menggang, et al. Research on the dynamic behavior of high-speed railway bridge piers under impact at pier top [J/OL]. China Civil Engineering Journal, 2023. DOI: 10.15951/j.tmgcxb.23070569.
[16] 杨孟刚, 李滨宏, 孟栋梁. 墩顶水平冲击作用下承插式桥墩动力响应研究 [J]. 铁道科学与工程学报, 2023, 20(11): 4221-4232.
YANG Menggang, LI Binhong, MENG Dongliang. Research on the dynamic response of socket piers under horizontal impact at pier top [J]. Journal of Railway Science and Engineering, 2023, 20(11): 4221-4232. 
[17] 崔堃鹏, 夏禾, 夏超逸等. 汽车撞击桥墩瞬态撞击力的等效静力计算 [J]. 振动与冲击, 2014, 33(04): 48-53+69.
CUI Kunpeng, XIA He, XIA Chaoyi, et al. Equivalent static force calculation methods fortransient impact force of a vehicle in collision with piers [J]. Journal of Vibration and Shock, 2014, 33(04): 48-53+69.
[18] 陆新征, 卢啸, 张炎圣, 等. 超高车辆-桥梁上部结构撞击力的工程计算方法 [J]. 中国公路学报, 2011, 24(02): 49-55.
LU Xinzheng, LU Xiao, ZHANG Yansheng, et al. Engineering calculation method for collision force between over-height truck and bridge superstructure [J]. China Journal of Highway and Transport, 2011, 24(02): 49-55.
[19] FAN Wei, YUAN Wancheng. Shock spectrum analysis method for dynamic demand of bridge structures subjected to barge collisions [J]. Computers & Structures, 2012, 90-91(Jan.): 1-12.
[20] 孟栋梁. 桥梁结构震致碰撞效应试验研究与理论分析 [D]. 中南大学, 2022.
MENG Dongliang. Experimental study and theoretical analysis of earthquake-induced pounding effects on bridges [D]. Central South University, 2022.
[21] Cowper G R, Symonds P S. Strain-hardening and strain-rate effects in the impact loading of cantilever

PDF(2647 KB)

Accesses

Citation

Detail

段落导航
相关文章

/