基于等几何刚度与质量扩散法的桁架结构动力学拓扑优化方法

江旭东1, 牛乾成1, 滕晓艳2, 武子旺1, 吴昊1, 连善立3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 85-93.

PDF(2458 KB)
PDF(2458 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (20) : 85-93.
论文

基于等几何刚度与质量扩散法的桁架结构动力学拓扑优化方法

  • 江旭东1,牛乾成1,滕晓艳2,武子旺1,吴昊1,连善立3
作者信息 +

An isogeometric-analysis-based stiffness and mass spreading method for topology optimization of trusses subjected to dynamic loads in time domain

  • JIANG Xudong1,NIU Qiancheng1,TENG Xiaoyan2,WU Ziwang1,WU Hao1,LIAN Shanli3
Author information +
文章历史 +

摘要

针对瞬态激励下桁架式结构的高承载轻量化设计问题,提出了基于等几何刚度与质量扩散法的桁架结构动力学拓扑优化方法。通过能量等效原理,将杆件单元的刚度与质量矩阵投影到弱材料等几何背景网格,构建桁架结构的等几何有限元动力学分析模型,利用无条件稳定的隐式Newmark时间积分方案求解结构的动态响应。以动柔度最小化为目标,以材料体积用量为约束,建立了桁架结构动力学布局优化模型。基于先离散-后微分敏度分析策略,推导了瞬态优化问题的伴随方程,在时-空离散的动力学系统上实施了一致性灵敏度分析。最后,通过2D和3D数值算例验证了所提方法的有效性。数值结果表明,提出方法可实现桁架式承力结构的动刚度性能优化设计,在实际工程中具有广阔的应用前景。

Abstract

This paper proposes the isogeometric-analysis-based stiffness and mass spreading method for topology optimization of trusses under transient loads to achieve their lightweight design with high load-bearing capability. Through the energy equivalence principle, both the stiffness and the mass matrixes are projected to the isogeometric background mesh, respectively. Subsequently, the isogeometric FEM of trusses is developed for transient analysis, which is effectively solved by unconditionally stable implicit Newmark’s scheme. We model the dynamic layout optimization of trusses for compliance minimization while constraining the volume of trusses. Based on the discretize-then-differentiate approach, the corresponding adjoint equations are derived for the transient problem, such that the sensitivity analysis is consistently computed on the discretized system in both space and time. Then, several 2D and 3D numerical examples are presented to verify the proposed method. The numerical results demonstrate that this approach has the potential to perform the layout design of trusses for the maximal dynamic stiffness, and thereby provides the wide application prospects in practical engineering. 

关键词

拓扑优化 / 柔度最小化 / 弹性动力学 / 等几何分析 / 刚度与质量扩散法 / 桁架

Key words

topology optimization / compliance minimization / elastodynamics / isogeometric analysis / stiffness and mass spreading method / truss

引用本文

导出引用
江旭东1, 牛乾成1, 滕晓艳2, 武子旺1, 吴昊1, 连善立3. 基于等几何刚度与质量扩散法的桁架结构动力学拓扑优化方法[J]. 振动与冲击, 2024, 43(20): 85-93
JIANG Xudong1, NIU Qiancheng1, TENG Xiaoyan2, WU Ziwang1, WU Hao1, LIAN Shanli3. An isogeometric-analysis-based stiffness and mass spreading method for topology optimization of trusses subjected to dynamic loads in time domain[J]. Journal of Vibration and Shock, 2024, 43(20): 85-93

参考文献

[1] Stolpe M. Truss optimization with discrete design variables: a critical review [J]. Structural and Multidisciplinary Optimization, 2016, 53(2): 349-374
[2] Hongjia Lu, Yi Min Xie. Reducing the number of different members in truss layout optimization [J]. Structural and Multidisciplinary Optimization, 2023, 66: 52
[3] M El Bouzouiki, R Sedaghati, I Stiharu. A non-uniform cellular automata framework for topology and sizing optimization of truss structures subjected to stress and displacement constraints [J]. Computers and Structures, 2021, 242: 106394
[4] M Dehghani, M Mashayekhi, M Sharifi. An efficient imperialist competitive algorithm with likelihood assimilation for topology, shape and sizing optimization of truss structure [J]. 2021, Applied Mathematical Modelling, 93: 1-27.
[5] 郝宝新, 周志成, 曲广吉, 李东泽. 桁架结构拓扑优化的半定规划建模与求解[J]. 哈尔滨工业大学学报, 2019, 51(10): 11-21
Hao Baoxin, Zhou Zhicheng, Qu Guangji. Modeling and solving of truss topology optimization problems based on semidefinite programming [J]. Journal of Harbin Institute of Technology, 2019, 51(10): 11-21
[6] 郝宝新, 周志成, 曲广吉, 李东泽. 桁架拓扑优化几何稳定性判定法和约束方案比较[J].北京航空航天大学学报, 2019, 45(8): 1663-1673
Hao Baoxin, Zhou Zhicheng, Qu Guangji. Comparison of determining methods and constraint schemes for geometric stability in truss topology optimization [J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(08): 1663-1673
[7] Weldeyesus AG, Gondzio J, He L, Gilbert M, Shepherd P, Tyas A. A Truss geometry and topology optimization with global stability constraints [J]. Structural and Multidisciplinary Optimization, 2020, 62(4): 1721-37
[8] Nguyen-Van Sy, Nguyen KT, Dang KD, Nguyen NTT, Lee S, Lieu QX. An evolutionary symbiotic organisms search for multiconstraint truss optimization under free vibration and transient behavior [J]. Advances in Engineering Software, 2021, 160:103045
[9] Khanh D. Dang, Sy Nguyen-Van, Son Thai, Seunghye Lee, Van Hai Luong, Qui X. Lieu. A single step optimization method for topology, size and shape of trusses using hybrid differential evolution and symbiotic organisms search [J]. Computers and Structures, 2022, 270: 106846
[10] Qui X. Lieu. A novel topology framework for simultaneous topology, size and shape optimization of trusses under static, free vibration and transient behavior [J]. Engineering with Computers, 2022, 38: 5111-5135
[11] Q Cai, RQ Feng, ZJ Zhang. Topology optimization of trusses incorporating practical local buckling stability considerations [J]. Structures, 2022, 41: 1710-1718
[12] Grzegorz Kozłowski, Tomasz Sokół. Enhanced growth method for topology and geometry optimization of truss structures [J]. Structural and Multidisciplinary Optimization, 2022, 65: 220
[13] Linwei He, Qingpeng Li, Matthew Gilbert, Paul Shepherd, Catherine Rankine, Thomas Pritchard, Vincenzo Reale. Optimization-driven conceptual design of truss structures in a parametric modelling environment [J]. Structures, 2022, 37: 469-482
[14] J Brutting, G Senatore, C Fivet. MILP-based discrete sizing and topology optimization of truss structures: new formulation and benchmarking [J]. Structural and Multidisciplinary Optimization, 2022, 65(10): 277
[15] Yufeng Liu, Zhen Wang, Hongjia Lu, Jun Ye, Yang Zhao, Yi Min Xie. Layout optimization of truss structures with modular constraints [J]. Structures, 2023, 55: 1460-1469
[16] Emily D. Sanders, Adeildo S. Ramos Jr, Glaucio H. Paulino. Topology optimization of tension-only cable nets under finite deformations [J]. Structural and Multidisciplinary Optimization, 2020, 62: 559-579
[17] Xiangji Li, Jihong Zhu, Jie Wang, Weihong Zhang. Topology optimization for prestressed cable-truss structure considering geometric nonlinearity [J]. Structural and Multidisciplinary Optimization, 2023, 66: 201
[18] Helen E. Fairclough, Linwei He, Thomas J. Pritchard, Matthew Gilbert. LayOpt: an educational web-app for truss layout optimization [J]. Structural and Multidisciplinary Optimization, 2021, 64: 2805-2823
[19] He L, Gilbert M, Song X. A Python script for adaptive layout optimization of trusses [J]. Structural and Multidisciplinary Optimization, 2019, 60(2): 835-847
[20] Ching Ernest, Carstensen Josephine V. Truss topology optimization of timber-steel structures for reduced embodied carbon design [J]. Engineering Structures, 2022, 252: 113540
[21] SC Subedi, A Shahba, M Thevamaran, DJ Thoma, K Suresh. Towards the optimal design of support structures for laser powder bed fusion-based metal additive manufacturing via thermal equivalent static loads [J]. Additive Manufacture, 2022, 57: 102956
[22] SJ Zhu, M Ohsaki, K Hayashi. Machine-specified ground structures for topology optimization of binary trusses using graph embedding policy network [J]. Advances in Engineering Software, 2021, 159: 103032
[23] Shuai Zheng, Lingjie Qiu, Fengxin Lan. TSO-GCN: A Graph Convolutional Network approach for real-time and generalizable truss structural optimization [J]. Applied Soft Computing, 2023, 134: 110015
[24] S Daynes, S Feih. Bio-inspired lattice structure optimisation with strain trajectory aligned trusses [J]. Materials and Designs, 2022, 213: 113540
[25] Xuyu Zhang, Yi Min Xie, Shiwei Zhou. A nodal-based evolutionary optimization algorithm for frame structures [J]. Computer-Aided Civil and Infrastructure Engineering, 2023, 38: 288-306
[26] HE L, GILBERT M. Rationalization of trusses generated via layout optimization [J]. Structural and Multidisciplinary Optimization, 2015, 52(4): 677-694.
[27] P. Wei, H.T. Ma, M.Y. Wang. The stiffness spreading method for layout optimization of truss structures [J]. Structural and Multidisciplinary Optimization, 2014, 49 (4): 667-682
[28] Y.X. Li, P. Wei, H.T. Ma. Integrated optimization of heat-transfer systems consisting of discrete thermal conductors and solid material [J]. International Journal of Heat and Mass Transfer, 2017,113: 1059-1069
[29] M.J. Cao, H.T. Ma, P. Wei. A modified stiffness spreading method for layout optimization of truss structures [J]. Acta Mechanica Sinica, 2018, 34 (6): 1072-1083
[30] Jie Gao, Mi Xiao, Yan Zhang, Liang Gao. A comprehensive review of isogeometric topology optimization: methods, applications and prospects [J]. Chinese Journal of Mechanical Engineering, 2020, 33(6): 34-47
[31] Yingjun Wang, Mi Xiao, Zhaohui Xia, Peigen Li, Liang Gao. From computer-aided design (CAD) toward human-aided design (HAD): an isogeometric topology optimization approach [J]. Engineering, 2023, 22(3): 94-105
[32] Yu Sun, Yan Zhou, Yunfeng Shi, Hongqing Li, Kuo Tian, Bo Wang. Isogeometric-analysis-based stiffness spreading method for truss layout optimization [J]. Computer Methods in Applied Mechanics and Engineering, 2022, 390: 114455
[33] Jakob S. Jensen, Praveen B. Nakshatrala, Daniel A. Tortorelli. On the consistency of adjoint sensitivity analysis for structural optimization of linear dynamic problems. Structural and Multidisciplinary Optimization, 2014, 49: 831-837
[34] 张磊, 张严, 丁喆. 黏性阻尼系统时域响应灵敏度及其一致性研究[J]. 力学学报, 2022, 54(4): 1113-1124
Zhang Lei, Zhang Yan, Ding Zhe. Adjoint sensitivity methods for transient responses of viscously damped systems and their consistency issues. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1113-1124
[35] Giraldo-Londoño O, Aguiló MA, Paulino GH. Local stress constraints in topology optimization of structures subjected to arbitrary dynamic loads: a stress aggregation-free approach [J]. Structural and Multidisciplinary Optimization, 2021, 64: 3287-3309
[36] Chao Wang, E. L. Zhou, Yi Wu, Eric Li, Y. Y. Huang. Transient stress‑constrained topology optimization of impacted structures [J]. Structural and Multidisciplinary Optimization, 2023, 66: 94
[37] R.A. Waltz, J.L. Morales, J. Nocedal & D. Orban. An interior algorithm for nonlinear optimization that combines line search and trust region steps [J]. Mathematical Programming, 2006, 107: 391-408

PDF(2458 KB)

Accesses

Citation

Detail

段落导航
相关文章

/