基于参数优化特征模态分解的强背景噪声下滚动轴承故障诊断

施亦非, 黄宇峰, 王锋, 石佳, 张洁

振动与冲击 ›› 2024, Vol. 43 ›› Issue (21) : 107-115.

PDF(2054 KB)
PDF(2054 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (21) : 107-115.
论文

基于参数优化特征模态分解的强背景噪声下滚动轴承故障诊断

  • 施亦非,黄宇峰,王锋,石佳,张洁
作者信息 +

Fault diagnosis of rolling bearing under strong background noise based on POFMD

  • SHI Yifei, HUANG Yufeng, WANG Feng, SHI Jia, ZHANG Jie
Author information +
文章历史 +

摘要

为准确提取被强背景噪声掩盖的滚动轴承故障信息,提出一种参数优化特征模态分解 (parameter-optimized feature mode decomposition, POFMD)方法。首先,为解决特征模态分解 (feature mode decomposition, FMD)方法的输入参数依赖人工经验选取的问题,以平方包络谱峭度 (kurtosis of the square envelope spectrum, KSES)为权值,结合平方包络谱基尼系数 (Gini index of the square envelope spectrum, GISES)构建加权平方包络谱基尼系数 (weighted Gini index of the square envelope spectrum, WGISES)作为目标函数,通过优化算法确定FMD的最优参数组合;其次,为解决FMD的主模态分量难以选取的问题,通过计算所分解模态分量的KSES值选取主模态分量;最后,通过包络谱分析实现故障诊断。经仿真信号和实测信号分析,验证了POFMD在强背景噪声下滚动轴承故障诊断中的有效性。与变分模态分解 (VMD)、最大相关峭度解卷积 (MCKD)和谱峭度 (SK)相比,POFMD有更优越的故障特征提取性能。

Abstract

To accurately extract the rolling bearing fault information masked by strong background noise, a parameter-optimized feature mode decomposition (POFMD) is proposed. Firstly, to solve the problem of selecting input parameters based on empirical experience in the feature mode decomposition (FMD), the weighted Gini index of the square envelope spectrum (WGISES) was used as the objective function, which is constructed using the kurtosis of the square envelope spectrum (KSES) as the weight and combined with the Gini index of the square envelope spectrum (GISES), to obtain the optimal parameter combination for the FMD through an optimization algorithm; Secondly, To address the challenge of selecting the main mode component in the FMD, the main mode component was selected by calculating the KSES values of the mode components decomposed by the FMD; Finally, envelope spectrum analysis was used to achieve fault diagnosis. After analyzing the simulated and measured signals, the effectiveness of the POFMD in rolling bearing fault diagnosis under strong background noise is verified. Compared with the variational modal decomposition (VMD), maximum correlation kurtosis deconvolution (MCKD) and spectrum kurtosis (SK), the POFMD performs better in extracting fault features.

关键词

特征模态分解 (FMD) / 包络谱峭度 (KSES) / 基尼系数 (GI) / 滚动轴承 / 故障诊断

Key words

feature modal decomposition (FMD) / kurtosis of square envelope spectrum (KSES) / Gini index (GI) / rolling bearings / fault diagnosis

引用本文

导出引用
施亦非, 黄宇峰, 王锋, 石佳, 张洁. 基于参数优化特征模态分解的强背景噪声下滚动轴承故障诊断[J]. 振动与冲击, 2024, 43(21): 107-115
SHI Yifei, HUANG Yufeng, WANG Feng, SHI Jia, ZHANG Jie. Fault diagnosis of rolling bearing under strong background noise based on POFMD[J]. Journal of Vibration and Shock, 2024, 43(21): 107-115

参考文献

[1] 王贡献, 张淼, 胡志辉, 等. 基于多尺度均值排列熵和参数优化支持向量机的轴承故障诊断[J]. 振动与冲击, 2022, 41(1): 221-228.
WANG Gongxian, ZHANG Miao, HU Zhihui, et al. Bearing fault diagnosis based on multi-scale mean permutation entropy and parametric optimization SVM[J]. Journal of Vibration and Shock, 2022, 41(01): 221-228.
[2] 丁承君, 冯玉伯, 王曼娜. 基于变分模态分解与深度卷积神经网络的滚动轴承故障诊断[J]. 振动与冲击, 2021, 40(2): 287-296.
DING Chengjun, FENG Yubo, WANG Manna. Rolling bearing fault diagnosis using variational mode decomposition and deep convolutional neural network[J]. Journal of Vibration and Shock, 2021, 40(2): 287-296.
[3] 任良, 甄龙信, 赵云, 等. 基于SSA-VMD-MCKD的强背景噪声环境下滚动轴承故障诊断[J]. 振动与冲击, 2023, 42(3): 217-226.
REN Liang, ZHEN Longxin, ZHAO Yun, et al. YunFault diagnosis of rolling bearing under strong background noise based on SSA -VMD- MCKD[J]. Journal of Vibration and Shock, 2023, 42(3): 217-226.
[4] 詹瀛鱼, 程良伦, 王涛. 解相关多频率经验模态分解的故障诊断性能优化方法[J]. 振动与冲击, 2020, 39(1): 115-122+149.
ZHAN Yingyu, CHENG Lianglun, WANG Tao. Fault diagnosis performance optimization method based on decorrelation multi-frequency EMD[J]. Journal of Vibration and Shock, 2020, 39(01): 115-122+149.
[5] RANDALL R B, ANTONI J. Why EMD and similar decompositions are of little benefit for bearing diagnostics[J]. Mechanical Systems and Signal Processing, 2023, 192: 110207.
[6] WU Z, HUANG N E. ENSEMBLE EMPIRICAL MODE DECOMPOSITION: A NOISE-ASSISTED DATA A-NALYSIS METHOD[J]. Advances in Adaptive Data Analysis, 2009, 01(01): 1-41.
[7] 何勇, 王红, 谷穗. 一种基于遗传算法的VMD参数优化轴承故障诊断新方法[J]. 振动与冲击, 2021, 40(6): 184-189.
HE Yong, WANG Hong, GU Sui. New fault diagnosis approach for bearings based on parameter optimized VMD and genetic algorithm Journal of Vibration and Shock[J]. Journal of Vibration and Shock, 2021, 40(6): 184-189.
[8] 董俭雄, 宋冬利, 李林, 等. 参数自适应VMD在高速列车轴箱轴承故障诊断中的应用[J]. 中南大学学报(自然科学版), 2023, 54(4): 1344-1357.
DONG Jianxiong, SONG Dongli, LI Lin, et al. Application of parameter adaptive VMD in fault diagnosis of axle box bearing of high-speed train[J]. Journal of Central South University (Science and Technology), 2023, 54(4): 1344-1357.
[9] 吴磊, 张新, 王家序, 等. 基于增强自适应盲解卷积方法的齿轮故障诊断[J]. 振动与冲击, 2023, 42(7): 123-132. 
WU Lei, ZHANG Xin, WANG Jiaxu, et al. Gear fault diagnosis based on enhanced and adaptive blind deconvolution method[J]. Journal of Vibration and Shock, 2023, 42(7): 123-132.
[10] 乔志城, 刘永强, 廖英英. 改进经验小波变换与最小熵解卷积在铁路轴承故障诊断中的应用[J]. 振动与冲击, 2021, 40(2): 81-90+118.
QIAO Zhicheng, LIU Yongqiang, LIAO Yingying. Application of improved wavelet transform and minimum entropy deconvolution in railway bearing fault diagnosis[J]. Journal of Vibration and Shock, 2021, 40(2): 81-90+118.
[11] 张龙, 蔡秉桓, 熊国良, 等. 小波滤波与最大相关峭度解卷积参数同步优化的轴承故障诊断[J]. 振动工程学报, 2021, 34(6): 1313-1322.
ZHANG Long, CAI Binghuan, XIONG Guoliang, et al. Bearing fault diagnosis based on synchronous optimization of wavelet filter and MCKD parameters[J]. Journal of Vibration Engineering, 2021, 34(6): 1313-1322.
[12] 闫云雪, 许传诺, 程学珍, 等. 基于改进快速峭度图的轴承故障诊断方法研究[J]. 振动与冲击, 2023, 42(15): 118-128.
YAN Yunxue, XU Chuannuo, CHENG Xuezhen, et al. Bearing fault diagnosis method based on improved fast kurtosis graph[J]. Journal of Vibration and Shock, 2023, 42(15): 118-128.
[13] MIAO Y, ZHANG B, LI C, et al. Feature Mode Decomposition: New Decomposition Theory for Rotating Machinery Fault Diagnosis[J]. IEEE Transactions on Industrial Electronics, 2023, 70(2): 1949-1960.
[14] 褚惟, 王贵勇, 刘韬, 等. 麻雀算法参数优化VMD联合K-SVD滚动轴承故障诊断[J]. 噪声与振动控制, 2022, 42(4): 100-106.
CHU Wei, WANG Guiyong, LIU Tao, et al. Rolling Bearing Fault Diagnosis Method Based on Parameter Optimization of Sparrow Search Algorithm VMD and K-SVD[J]. Noise and Vibration Control, 2022, 42(4): 100-106.
[15] MIAO Y, WANG J, ZHANG B, et al. Practical framework of Gini index in the application of machinery fault feature extraction[J]. Mechanical Systems and Signal Processing, 2022, 165: 108333.
[16] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey Wolf Optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
[17] 鄢小安, 贾民平. 基于参数自适应特征模态分解的滚动轴承故障诊断方法[J]. 仪器仪表学报, 2022, 43(10): 252-259.
YAN Xiaoan, JIA Minping. A rolling bearing fault diagnosis method based on parameter-adaptive feature mode decomposition[J]. Chinese Journal of Scientific Instrument 2022, 43(10): 252-259.
[18] MA J, WANG X. Compound Fault Diagnosis of Rolling Bearing Based on ACMD, Gini Index Fusion and AO-LSTM[J]. Symmetry, 2021, 13(12): 2386. 
[19] MIAO Y, ZHAO M, HUA J. Research on sparsity indexes for fault diagnosis of rotating machinery[J]. Measurement, 2020, 158: 107733. 
[20] 李翠省, 廖英英, 刘永强. 基于EEMD和参数自适应VMD的高速列车轮对轴承故障诊断[J]. 振动与冲击, 2022, 41(1): 68-77.
LI Cuixing, LIAO Yingying, LIU Yongqiang. Fault diagnosis of wheelset bearing of high-speed train based on EEMD and parameter adaptive VMD[J]. Journal of Vibration and Shock, 2022, 41(1): 68-77.
[21] SMITH W A, RANDALL R B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study[J]. Mechanical Systems and Signal Processing, 2015, 64-65: 100-131.
[22] WU W, YI C, BAI J, et al. Envelope Harmonic Noise Ratio Based Adaptive Kurtogram and Its Application in Bearing Compound Fault Identification[J]. IEEE Sensors Journal, 2022, 22(9): 8701-8714.

PDF(2054 KB)

309

Accesses

0

Citation

Detail

段落导航
相关文章

/