双向地震下博物馆滑移型文物的易损性评估

刘佩1, 2, 惠大城1, 薛雯1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (21) : 163-173.

PDF(4560 KB)
PDF(4560 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (21) : 163-173.
论文

双向地震下博物馆滑移型文物的易损性评估

  • 刘佩1,2,惠大城1,薛雯1
作者信息 +

Fragility evaluation of sliding artifacts in the museum under bidirectional seismic excitation

  • LIU Pei1,2, HUI Dacheng1, XUE Wen1
Author information +
文章历史 +

摘要

为科学开展博物馆滑移型文物的防震预防性保护工作,亟需对其地震风险进行量化评估。为解决风险评估的核心问题,提出了双水平向地震作用下博物馆滑移型文物的易损性评估方法,主要步骤为:考虑结构及浮放界面摩擦行为的非线性,构建博物馆-展柜-文物系统三维非线性有限元模型;将双向谱加速度和文物滑移量的最大均方根值分别作为地震动强度指标和工程需求参数,开展增量动力分析;建立文物滑移的概率地震需求模型及易损性函数。开展了代表典型滑移型文物的浮放物体在双向地震激励下的振动台试验,并结合单向地震激励下的理论滑移运动方程,对模拟滑移的有限元模型的正确性进行了验证;对所采用的地震动强度指标的有效性和充分性进行了检验,分析了固定和浮放展柜、所处楼层、滑移限值、单向和双向地震作用、基础隔震等因素对某四层框架结构博物馆中滑移型文物易损性的影响。结果表明:对于隔震结构及滑移限值取较小值时的非隔震结构,文物的滑移易损性对所处楼层不敏感,而对于滑移限值取较大值时的非隔震结构,则随楼层的升高而增大;非隔震结构内部浮放展柜中文物的滑移易损性低于固定展柜的情况,而隔震结构内部浮放和固定展柜中文物的滑移易损性十分接近;双向地震作用下文物的滑移易损性大于单向地震作用。

Abstract

关键词:双向地震作用;地震易损性;增量动力分析;滑移运动;博物馆-展柜-文物系统

Key words

Bidirectional seismic excitation / seismic fragility / incremental dynamic analysis / sliding motion / museum-showcase-artifact system

引用本文

导出引用
刘佩1, 2, 惠大城1, 薛雯1. 双向地震下博物馆滑移型文物的易损性评估[J]. 振动与冲击, 2024, 43(21): 163-173
LIU Pei1, 2, HUI Dacheng1, XUE Wen1. Fragility evaluation of sliding artifacts in the museum under bidirectional seismic excitation[J]. Journal of Vibration and Shock, 2024, 43(21): 163-173

参考文献

[1] Reinhorn A M, Viti S. Monumental buildings used as museums: Protection or danger for the artifacts? [J]. Procedia Structural Integrity, 2020, 29: 40-47.
[2] Liu P, Pang H, Xue W, Yang W G. Fragility and risk assessment for sliding artifacts in artifact-showcase-museum systems subjected to three-component ground motions [J]. Journal of Building Engineering, 2022, 45: 103635.
[3] Pellecchia D, Sessa S, Vaiana N, Rosati L. Comparative assessment on the rocking response of seismically base-isolated rigid blocks [J]. Procedia Structural Integrity, 2020, 29: 95-102. 
[4] 葛家琪, 马伯涛. 中国博物馆收藏文物一体化防震技术研究进展 [J]. 中国博物馆, 2021, 38(1): 10-16. ( Ge Jiaqi, Ma Botao. Progress on the research of integrated anti-seismic technology of Chinese museums collections [J]. Chinese museum, 2021, 38(1): 10-16. (in Chinese) )
[5] Liu P, Xue W, Pang H, Zhang Y M, Chen H T, Yang W G. Seismic overturning fragility analysis for freestanding building contents subjected to horizontal bidirectional floor motions [J]. Soil Dynamics and Earthquake Engineering, 2022, 161: 107414.
[6] Majdalaweyh S, Pang W C. Empirical seismic fragility assessment and optimal risk mitigation of building contents [J]. Engineering Structures, 2022, 259: 114183.
[7] D’Angela D, Magliulo G, Cosenza E. Towards a reliable seismic assessment of rocking components [J]. Engineering Structures, 2021, 230: 111673.
[8] Kazantzi A K, Lachanas C G, Vamvatsikos D. Seismic response distribution expressions for on-ground rigid rocking blocks under ordinary ground motions [J]. Earthquake Engineering & Structural Dynamics, 2021, 50: 3311-3331.
[9] Cosenza E, Di Sarno L, Maddaloni G, Magliulo G, Petrone C, Prota A. Shake table tests for the seismic fragility evaluation of hospital rooms [J]. Earthquake Engineering & Structural Dynamics, 2015, 44: 23-40.
[10] Jaimes M A, Candia G. Seismic risk of sliding ground-mounted rigid equipment [J]. Engineering Structures, 2020, 204: 110066.
[11] 刘汉泉, 曲哲. 建筑内部物品滑移破坏易脆性分析中的楼面运动强度指标 [J]. 世界地震工程, 2020, 36(2): 85-91. ( Liu Hanquan, Qu Zhe. An intensity measure of floor motions for seismic fragility analysis of sliding contents in buildings [J]. World Earthquake Engineering, 2020, 36(2): 85-91. (in Chinese) )
[12] 杨维国, 胡卫中, 齐涛, 刘佩, 王萌, 葛家琪. 地震作用下浮放物体运动状态研究 [J]. 振动与冲击, 2021, 40(23): 247-253. ( Yang Weiguo, Hu Weizhong, Qi Tao, Liu Pei, Wang Meng, Ge Jiaqi. Motion state of floating object under earthquake [J]. Journal of Vibration and Shock, 2021, 40(23): 247-253. (in Chinese) )
[13] 王萌, 闫一, 傅萌, 张小朋, 巢臻. 栓绑法固定馆藏文物的抗震有效性振动台试验研究 [J]. 工程力学, 2022, 39(2): 208-221. ( Wang Meng, Yan Yi, Fu Meng, Zhang Xiaopeng, Chao Zhen. Study on seismic effectiveness of tie up method for fixing cultural relics based on shaking table tests [J]. Engineering Mechanics, 2022, 39(2): 208-221. (in Chinese) )
[14] 王伟, 胡书领, 邹超. 基于增量动力分析的梁贯通式支撑钢框架地震易损性研究 [J]. 建筑结构学报, 2021, 42(4): 42-49. ( Wang Wei, Hu Shuling, Zou Chao. Seismic fragility analysis of beam-through steel braced frames based on IDA method [J]. Journal of Building Structures, 2021, 42(4): 42-49. (in Chinese) )
[15] Cheng Y, Dong Y R, Bai G L, Wang Y Y. IDA-based seismic fragility of high-rise frame-core tube structure subjected to multi-dimensional long-period ground motions [J]. Journal of Building Engineering, 2021, 43: 102917.
[16] 邱意坤, 周长东, 张光伟. 三维地震动作用下适用于高耸结构的地震动强度指标 [J]. 工程力学, 2020, 37(3): 98-107. ( Qiu Yikun, Zhou Changdong, Zhang Guangwei. An earthquake intensity measure for high-rise structures under three-dimensional earthquake ground motions [J]. Engineering Mechanics, 2020, 37(3): 98-107. (in Chinese) )
[17] 杜轲, 燕登, 高嘉伟, 孙景江. 基于FEMA P-58的RC框架结构抗震及减隔震性能评估 [J]. 工程力学, 2020, 37(8): 134-137. ( Du Ke, Yan Deng, Gao Jiawei, Sun Jingjiang. Seismic performance assessment of RC frame structures with energy dissipation and isolation devices based on FEMA P-58 [J]. Engineering Mechanics, 2020, 37(8): 134-137. (in Chinese) 

PDF(4560 KB)

Accesses

Citation

Detail

段落导航
相关文章

/