针对湍流边界层内壁面压力脉动功率谱的计算问题,本文结合Grasso修订的TNO-Blake解析模型、RANS时均流场解,发展一种脉动压力计算方法,近壁面附近采用RANS数值解,对于壁面附近湍流各向异性特性,流向和横向异性模型参数采用Stalnov推荐数值,法向异性模型参数采用试验参数,对某平板上一点处的压力脉动功率谱进行了计算,分析了湍流能谱模型、迁移速度等影响,并与Goody模型结果进行对比,研究表明,本文计算方法合理可行,能快速获取壁面压力脉动功率谱,可为工程装备设计的振动噪声分析提供输入。
Abstract
In order to calculate the pressure fluctuation power spectrum density at the wall under the turbulent boundary layer, this paper develops a method by combining the TNO-Blake analytical model revised by Grasso and the RANS time-averaged flow field solution. For the anisotropy characteristics of turbulent flow near the wall, the Stalnov’s recommended values were used for the flow direction and transverse direction’s anisotropy model, and the test parameters were used for the normal anisotropy model. The effects of turbulence energy spectrum model and migration velocity are analyzed, and compared with the results of Goody model. The results show that this calculation method is reasonable and feasible, which can quickly obtain the wall pressure fluctuation PSD, and can provide input for the vibration and noise analysis of engineering equipment design.
关键词
时均流场 /
湍流边界层 /
压力脉动功率谱 /
{{custom_keyword}} /
Key words
time mean flow field /
turbulent boundary layer /
pressure fluctuations PSD
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 司海青, 朱卫军. 气动噪声计算方法及其应用 [M]. 科学出版社, 2017.
[2] 汤渭霖, 俞孟萨, 王斌. 水动力噪声理论 [M]. 科学出版社, 2019.
[3] Chase D M .Modeling the wavevector-frequency spectrum of turbulent boundary layer wall pressure[J].Journal of the Acoustical Society of America, 1980, 65(S1):S90.
[4] Chase D M .The character of the turbulent wall pressure spectrum at subconvective wavenumbers and a suggested comprehensive model[J].Journal of Sound & Vibration, 1987, 112(1):125-147.
[5] Parchen R. Progress report DRAW : a prediction scheme for trailing edge noise based on detailed boundary layer characteristics[R]. The Netherlands: TNO Institute of Applied Physics, 1998.
[6] GRASSO G, ROGER M, MOREAU S. Advances in the Prediction of the Statistical Properties of Wall-Pressure Fluctuations under Turbulent Boundary Layers [J]. Fluids, 2022, 7(5):161.
[7] GRASSO G, JAISWAL P, WU H, et al. Analytical models of the wall-pressure spectrum under a turbulent boundary layer with adverse pressure gradient [J]. Journal of Fluid Mechanics, 2019, 877:1007-1062.
[8] GOODY M. Empirical spectral model of surface pressure fluctuations [J]. AIAA Journal, 2004, 42(9): 1788-1794.
[9] FARABEE T M, CASARELLA M J. Spectral features of wall pressure fluctuations beneath turbulent boundary layers [J]. Physics of Fluids A Fluid Dynamics, 1991, 3(10): 2410-2420.
[10] HU N. Empirical Model of Wall Pressure Spectra in Adverse Pressure Gradients [J]. AIAA Journal, 2018, 56(9): 3491-3506.
[11] LEE S. Empirical Wall-Pressure Spectral Modeling for Zero and Adverse Pressure Gradient Flows [J]. AIAA Journal, 2018, 56(5): 1818-1829.
[12] 徐嘉启, 梅志远, 李华东等. 湍流边界层激励下加筋平板振声响应特性研究 [J]. 振动与冲击, 2020, 39(14):156-163.
XU Jiaqi;MEI Zhiyuan;LI Huadong, et al. Vbration & acoustic response characteristics of a stiffened plate stimulated by turbulent boundary layer wall pressure fluctuation [J]. Journal of Vibration and Shock, 2020,39(14):156-163.
[13] 赵国亮, 陈美霞. 湍流边界层激励下平板振动响应相似性研究 [J]. 振动与冲击, 2022, 41(1): 147-153.
ZHAO Guoliang, CHEN Meixia. Similarity of vibration response of flat plate excited by turbulent boundary layer [J]. Journal of Vibration and Shock, 2022, 41(1): 147-153.
[14] 王春旭, 曾革委, 许建. 湍流边界层脉动压力波数—频率谱模型对比研究 [J]. 中国舰船研究, 2011, 6(1): 35-40.
WANG Chun-xu, ZENG Gewei, XU Jian. A Comparative Study of Models for the Wavenumber-Frequency Spectrum of TBL Fluctuation Pressure [J]. Chinese Journal of Ship Research, 2011, 6(1): 35-40.
[15] DOMINIQUE J, BERGHE J V D, SCHRAM C, et al. Artificial Neural Networks Modelling of Wall Pressure Spectra Beneath Turbulent Boundary Layers [J]. Physics of Fluids, 2022, 34(035119).
[16] Bowen Y , Zixuan Y .On the wavenumber–frequency spectrum of the wall pressure fluctuations in turbulent channel flow[J].Journal of Fluid Mechanics, 2022(937):A39.
[17] Posa A , Balaras E. A numerical investigation about the effects of Reynolds number on the flow around an appended axisymmet body of revolution [J]. Journal of Fluid Mechanics, 2020, 884:A41.
[18] Lee Y T , Blake W K , Farabee T M .Modeling of Wall Pressure Fluctuations Based on Time Mean Flow Field[J].Journal of Fluids Engineering, 2005, 127:233-240.
[19] L. J ,Peltier,and,et al.Estimating turbulent-boundary-layer wall-pressure spectra from CFD RANS solutions[J].Journal of Fluids and Structures, 2007, 23(6):920-937.
[20] Hu N .CFD-based study on one- and two-point statistics of wall pressure fluctuations[C].28th AIAA/CEAS Aeroacoustics 2022 Conference, 2022.
[21] BLAKE W K. Mechanics of Flow-Induced Sound and Vibration, Volume 1 General Concepts and Elementary Sources [M]. London, UK: Academic Press, 2017.
[22] Y. F H, Bonness W K, Hambric S A. Comparison of semi-empirical models for turbulent boundary layer wall pressure spectra[J]. Journal of Sound and Vibration, 2009, 319(1-2): 199-217.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}