小型图像声呐发射换能器优化设计

陆炜文1, 2, 周博文1, 童晖1, 3, 张彬1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (21) : 187-193.

PDF(2165 KB)
PDF(2165 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (21) : 187-193.
论文

小型图像声呐发射换能器优化设计

  • 陆炜文1,2,周博文1,童晖1,3,张彬1
作者信息 +

Optimization design of small image sonar transmission transducer

  • LU Weiwen1,2, ZHOU Bowen1, TONG Hui1,3, ZHANG Bin1
Author information +
文章历史 +

摘要

在复杂水下环境中,图像声呐因其高分辨率、高效率的探测优势,在水下目标识别时发挥着重要作用。多波束图像声呐的发射换能器多采用弧形阵,其具有大波束开角,但存在指向性边缘起伏较大的问题,影响信号强度均匀性。此外,图像声呐发射换能器通常用匹配层技术拓宽工作带宽,以获取更多信息,同时,匹配层的阻抗介于激励源和介质之间,更有利于声能的辐射。本文设计了一款弧形发射换能器,通过对阵列加权的方式来控制波束,减小指向性起伏,并添加了一层匹配层,用以拓展带宽。实际测试结果表明,换能器在130°水平开角内的指向性起伏从3dB降低至1.5dB,中心频率为402kHz,带宽拓宽至217.3kHz,优化效果显著。

Abstract

In the complex underwater environment, imaging sonar plays an important role in identifying underwater target recognition because of its high-resolution detection and high efficiency. The emission transducers of multi-beam imaging sonar mostly use arc array, which has wide directional range. But there is a problem of large directional fluctuation at edge, which affects the uniformity of signal intensity. In addition, the transducer usually uses the matching layer technology to broaden the working bandwidth for more information. The impedance of the matching layer is between the excitation source and the medium, which is conducive to the radiation of sound energy. This paper designs a 400kHz arc emission transducer, which controls the beam by weighting the array to reduce directional fluctuations and adds a matching layer to the transducer. The results show that the horizontal directional fluctuation in 130°is reduced from 3dB to 1.5dB, the central frequency is 402kHz, and the bandwidth is broadened to 217.3kHz. The optimization effect is significant.

关键词

1-3压电复合材料 / 指向性 / 换能器 / 弧形阵

Key words

1-3 Piezoelectric composite / Directivity / Transduecr / Arc array

引用本文

导出引用
陆炜文1, 2, 周博文1, 童晖1, 3, 张彬1. 小型图像声呐发射换能器优化设计[J]. 振动与冲击, 2024, 43(21): 187-193
LU Weiwen1, 2, ZHOU Bowen1, TONG Hui1, 3, ZHANG Bin1. Optimization design of small image sonar transmission transducer[J]. Journal of Vibration and Shock, 2024, 43(21): 187-193

参考文献

[1] Xia W ,Jin X ,Dou F . Thinned Array Design With Minimum Number of Transducers for Multibeam Imaging Sonar[J]. IEEE Journal of Oceanic Engineering,2017,42(4).
[2] 李海森,魏波,杜伟东.多波束合成孔径声呐技术研究进展[J].测绘学报,2017,46(10):1760-1769.
LI Haisen, WEI Bo, DU Weidong. Technical Progress in Research of Multibeam Synthetic Aperture Sonar[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1760-1769.
[3] 周博文,童 晖,张 彬,许伟杰.八波束相控阵换能器的研制[J]. 振动与冲击,2022,41(8): 217-222
ZHOU Bowen, TONG Hui, ZHANG Bin, XU Weijie.   Development of eight-beam phased array transducer[J]. Journal of Vibration and Shock, 2022, 41(8): 217-222.
[4] 姜科,王忠康.前视避障声呐综述[J].声学与电子工程, 2022(04):43-50.
JIANG Ke. WANG Zhongkang. Review of forward looking obstacle avoidance sonar[J]. Acoustics and Electronics Engineering, 2022(04):43-50.
[5] 周天,欧阳永忠,李海森.浅水多波束测深声呐关键技术剖析[J].海洋测绘,2016,36(03):1-6.
ZHOU Tian, OUYANG Yongzhong, LI Haisen. Key Technologies of Shallow Water Multibeam Bathymetric Sonar[J]. Hydrographic Surveying and Charting, 2016, 36( 3) : 1-6.
[6] Liu Z. Research on high frequency arc transducer array directivity[C]//2015 International Industrial Informatics and Computer Engineering Conference. Atlantis Press, 2015: 1574-1578.
[7] Ahmad K A, Osman M K, Hussain Z, et al. Design and characterization piezoelectric acoustic transducer for sonar application[C]//2018 8th IEEE international conference on control system, computing and engineering (ICCSCE). IEEE, 2018: 233-237.
[8] Benjamin K C. Recent advances in 1-3 piezoelectric polymer composite transducer technology for AUV/UUV acoustic imaging applications[J]. Journal of electroceramics, 2002, 8(2): 145-154.
[9] 王嘉程,王丽坤,仲 超.1-3型压电复合材料研究进展[J].电子元件与材料,2021,40(03):219-228. 
WANG Jiacheng, WANG Likun, ZHONG Chao. Recent advance in 1-3 piezoelectric composites[J]. Electronic Components and Materials, 2021, 40(3): 219-228.
[10] Xie Z ,Panpan H . Study on Directivity of Underwater Circular Transducer Array[J]. Journal of Physics: Conference Series,2023,2477(1).
[11] 黄水兵,李勤博,王洪亮.一种改善宽波束发射换能器指向性的方法和换能器:CN201911044828[P]. 2023-06-20.
[12] 赵 慧,马晶鑫,王艳等.图像声呐换能器指向性优化研究[J].振动与冲击,2021,40(23):182-186.
ZHAO Hui, MA Jingxin, WANG Yan, et al. Directivity optimization of image sonar transducer[J]. Journal of Vibration and Shock, 2021, 40(23): 182-186.
[13] 赵 慧,李海森,周 天,等.低指向性起伏弧形发射换能器阵:CN201811447773[P]. 2019-04-12.
[14] Mengmeng W ,Lili X ,Hongwei W , et al. Design, fabrication and testing of a high frequency broadband hydroacoustic transducer for sonar systems[J]. Results in Physics,2023,52.
[15] 米徐慧,秦雷,廖擎玮.1-1-3型压电复合材料的振动模态研究[J].振动与冲击,2018,37(01):223-228.
Mi xuhui, Qin lei, Liao qingwei. Vibration modes mode of 1-1-3 piezoelectric composites[J]. Journal of Vibration and Shock, 2018, 37(1): 223-228.
[16] Saffar S, Abdullah A. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies< 2.5 MHz–Application of a genetic algorithm[J]. Ultrasonics, 2012, 52(1): 169-185.
[17] 童 晖,周益明,王佳麟等.高频宽带换能器研究[J].声学技术,2013,32(06):524-527.
TONG Hui, ZHOU Yiming, WANG Jialin, et al. Study of high frequency broadband transducer[J]. Technical Acoustics, 2013, 32(6): 524-527.
[18] 卞加聪,赵 慧,沈明杰.高频水声换能器匹配层技术研究[J].声学技术,2021,40(01):143-146.
BIAN Jiacong,ZHA0 Hui, SHEN Mingjie.Research on 
matching layer technology of underwater high freguency acoustic transducer. Technical Acoustics, 40(1): 143-146.
[19] 卞加聪,王 艳,刘振君等.高频声呐换能器梯度匹配层声学特性研究[J].振动与冲击,2022,41(07):153-158+192.
BIAN Jiacong, WANG Yan, LIU Zhenjun, et al. Acoustic characteristics of gradient matching layer of high frequency sonar transducer[J]. Journal of Vibration and Shock, 2022, 41(7): 153-158.
[20] 莫喜平.ANSYS软件在模拟分析声学换能器中的应用[J].声学技术,2007(06):1279-1290.
MO Xiping, Simulation and analysis of acoustics transducers using the ANSYS software. Technical Acoustics, 2007(06): 1279-1290.
[21] 李邓化, 居伟骏, 贾美娟, 许晓飞. 新型压电复合换能器及其应用[M]. 北京: 科学出版社, 2007.
[22] 栾桂冬, 张金铎, 王仁乾. 压电换能器和换能器阵[M]. 北京: 北京大学出版社, 2005.
[23] Chan H L W, Unsworth J. Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1989, 36(4): 434-441.

PDF(2165 KB)

Accesses

Citation

Detail

段落导航
相关文章

/