基于加速度反应谱与地震动持时的地震输入能量谱研究

郑彦君1, 王湛1, 2, 刘德铭1, 潘建荣1, 2, 胡方鑫1, 2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (21) : 21-30.

PDF(3515 KB)
PDF(3515 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (21) : 21-30.
论文

基于加速度反应谱与地震动持时的地震输入能量谱研究

  • 郑彦君1,王湛1,2,刘德铭1,潘建荣1,2,胡方鑫1,2
作者信息 +

Seismic input energy spectrum based on modified acceleration response spectrum and seismic duration

  • ZHENG Yanjun1, WANG Zhan1,2, LIU Deming1, PAN Jianrong1,2, HU Fangxin1,2
Author information +
文章历史 +

摘要

建立具有设计意义的地震动总输入能量谱是实现结构能量设计的基础。根据中长周期段修正的加速度反应谱及地震动有效震时,提出了一种生成地震动输入能量谱的方法。统计 270 组人工波的时程分析结果,得到了以等效速度表征的四段式弹性单自由度(single degree of freedom, SDOF)体系总输入能量谱,并给出了不同场地类型、抗震设防烈度等设计条件下归一化等效速度谱的参数取值。在考虑延性系数及刚度折减系数的影响后,提出了弹塑性 SDOF 体系修正输入能量谱的等效速度谱,估算了引起结构损伤的滞回耗能占总能量的比值。该能量谱可为基于能量的结构设计及研究提供参考。

Abstract

Establishing seismic input energy spectra is foundational for realizing energy-based seismic design. This study proposes a method to generate input energy spectra, considering the medium and long period corrections of design acceleration response spectra, and the effective duration of ground motions. Analyzing the time history results of 270 sets of artificial ground motions, a four-piece form input energy spectrum for elastic single degree of freedom (SDOF) systems represented in equivalent velocity is derived. Parameters for the normalized equivalent velocity spectra, which vary under different design conditions such as sites and earthquake intensities, are provided. Furthermore, considering the ductility coefficient and stiffness reduction factor, the equivalent velocity spectra for the revised input energy spectra of elasto-plastic SDOF system are proposed. The ratio of hysteretic energy that causes structural damage to the total energy is estimated. The findings could offer a reference for energy-based structural design and research.

关键词

归一化等效速度谱 / 弹塑性SDOF体系 / 地震动持时 / 滞回耗能占比

Key words

normalized equivalent velocity spectra / inelastic SDOF system / ground motion duration / hysteretic input energy ratio

引用本文

导出引用
郑彦君1, 王湛1, 2, 刘德铭1, 潘建荣1, 2, 胡方鑫1, 2. 基于加速度反应谱与地震动持时的地震输入能量谱研究[J]. 振动与冲击, 2024, 43(21): 21-30
ZHENG Yanjun1, WANG Zhan1, 2, LIU Deming1, PAN Jianrong1, 2, HU Fangxin1, 2. Seismic input energy spectrum based on modified acceleration response spectrum and seismic duration[J]. Journal of Vibration and Shock, 2024, 43(21): 21-30

参考文献

 [1] Housner George W. Limit design of structures to resist earthquakes [C] // Proceedings of the First World Conference on Earthquake Engineering. Berkeley, California: Earthquake Engineering Research Institute, 1956:1-12.
 [2] Akiyama Hiroshi. Earthquake-resistant limit-state design for buildings [M]. University of Tokyo Press, Tokyo, 1985.
 [3] Kuwamura Hitoshi, Galambos Theodore V. Earthquake load for structural reliability [J]. Journal of Structural Engineering, 1989,115(6):1446-1462.
 [4] Zahrah Tony F., Hall William J. Earthquake energy absorption in SDOF structures [J]. Journal of structural Engineering, 1984,110(8):1757-1772.
 [5] Akbas B., Shen J., Hao H. Energy approach in performance‐based seismic design of steel moment resisting frames for basic safety objective [J]. The structural design of tall buildings, 2001,10(3):193-217.
 [6] Akbas Bulent, Shen Jay, Temiz Hakan. Identifying the hysteretic energy demand and distribution in regular steel frames [J]. Steel and Composite Structures, 2006,6(6):479.
 [7] Akbas Bülent, Tugsal ülgen Mert, Kara F. 0lknur. An evaluation of energy response and cumulative plastic rotation demand in steel moment‐resisting frames through dynamic/static pushover analyses [J]. The Structural Design of Tall and Special Buildings, 2009,18(4):405-426.
 [8] Enderami Seyyed Amin, Beheshti-Aval Seyed Bahram, Saadeghvaziri Mohamad Ala. New energy based approach to predict seismic demands of steel moment resisting frames subjected to near-fault ground motions [J]. Engineering structures, 2014,72:182-192.
 [9] Mezgebo Mebrahtom Gebrekirstos, Lui Eric M. A new methodology for energy-based seismic design of steel moment frames [J]. Earthquake Engineering and Engineering Vibration, 2017,16(1):131-152.
[10] Ucar Taner, Merter Onur, Duzgun Mustafa. A study on determination of target displacement of RC frames using PSV spectrum and energy-balance concept [J]. Structural Engineering and Mechanics, 2012,41(6):759-773.
[11] Benavent Climent A., Pujades Llg, Lopez Almansa F. Design energy input spectra for moderate‐seismicity regions [J]. Earthquake engineering & structural dynamics, 2002,31(5):1151-1172.
[12] Benavent-Climent A., López-Almansa Francisco, Bravo-González Diego Andrés. Design energy input spectra for moderate-to-high seismicity regions based on Colombian earthquakes [J]. Soil dynamics and earthquake engineering, 2010,30(11):1129-1148.
[13] Okur A., Erberik M. A. Adaptation of energy principles in seismic design of Turkish RC frame structures. Part I: Input energy spectrum [C] // Proceedings of the 15th World Conference on Earthquake Engineering, September:2012:28.
[14] Fajfar Peter, Vidic Tomaž, Fischinger Matej. Seismic demand in medium‐and long‐period structures [J]. Earthquake Engineering & Structural Dynamics, 1989,18(8):1133-1144.
[15] Chai Y. H., Fajfar Peter, Romstad K. M. Formulation of duration-dependent inelastic seismic design spectrum [J]. Journal of Structural Engineering, 1998,124(8):913-921.
[16] Decanini Luis D., Mollaioli Fabrizio. An energy-based methodology for the assessment of seismic demand [J]. Soil Dynamics and Earthquake Engineering, 2001,21(2):113-137.
[17] Bozorgnia Yousef, Hachem Mahmoud M., Campbell Kenneth W. Ground motion prediction equation (“attenuation relationship”) for inelastic response spectra [J]. Earthquake Spectra, 2010,26(1):1-23.
[18] Rupakhety R., Sigurdsson S. U., Papageorgiou A. S., et al. Quantification of ground-motion parameters and response spectra in the near-fault region [J]. Bulletin of Earthquake Engineering, 2011,9(4):893-930.
[19] Cheng Yin, Lucchini Andrea, Mollaioli Fabrizio. Ground-motion prediction equations for constant-strength and constant-ductility input energy spectra [J]. Bulletin of Earthquake Engineering, 2020,18(1):37-55.
[20] 程光煜, 叶列平. 弹塑性SDOF系统的地震输入能量谱 [J]. 工程力学, 2008,(02): 28-39.
CHENG Guangyu, YE Lieping. Earthquake input energy spectrum for inelastic SDOF systems [J]. Engineering Mechanics, 2008,(02): 28-39.
[21] López-Almansa Francisco, Yazgan Ahmet Utku, Benavent-Climent Amadeo. Design energy input spectra for high seismicity regions based on Turkish registers [J]. Bulletin of Earthquake Engineering, 2013,11(4):885-912.
[22] Chapman Martin C. On the use of elastic input energy for seismic hazard analysis [J]. Earthquake Spectra, 1999,15(4):607-635.
[23] Decanini Luis D., Mollaioli Fabrizio. Formulation of elastic earthquake input energy spectra [J]. Earthquake engineering & structural dynamics, 1998,27(12):1503-1522.
[24] Dindar Ahmet Anıl, Yalçın Cem, Yüksel Ercan, et al. Development of earthquake energy demand spectra [J]. Earthquake Spectra, 2015,31(3):1667-1689.
[25] Alıcı Fırat Soner, Sucuoğlu Halûk. Prediction of input energy spectrum: attenuation models and velocity spectrum scaling [J]. Earthquake Engineering & Structural Dynamics, 2016,45(13):2137-2161.
[26] Merter Onur. An investigation on the maximum earthquake input energy for elastic SDOF systems [J]. Earthq Struct, 2019,16(4):487-499.
[27] Zhou Ying, Song Ge, Huang Shimin, et al. Input energy spectra for self-centering SDOF systems [J]. Soil Dynamics and Earthquake Engineering, 2019,121:293-305.
[28] Kempton Justin J., Stewart Jonathan P. Prediction equations for significant duration of earthquake ground motions considering site and near-source effects [J]. Earthquake spectra, 2006,22(4):985-1013.
[29] Bommer Julian J., Stafford Peter J., Alarcón John E. Empirical equations for the prediction of the significant, bracketed, and uniform duration of earthquake ground motion [J]. Bulletin of the Seismological Society of America, 2009,99(6):3217-3233.
[30] 陈运泰, 刘瑞丰. 矩震级及其计算 [J]. 地震地磁观测与研究, 2018, 39(02): 1-9.
CHEN Yuntai, LIU Ruifeng. Moment magnitude and its calculation [J]. Seismological and Geomagnetic Observation and Research, 2018, 39(02): 1-9.
[31] 建筑抗震设计规范: GB50011—2010 [S]. 北京: 中国建筑工业出版社, 2010.
Code for seismic design of buildings: GB50011—2010 [S]. Beijing: China Architecture & Building Press, 2010.
[32] 中国地震动参数区划图: GB 18306—2001 [S]. 北京: 中国标准出版社, 2001.
The China seismic ground motion parameter zonation map: GB 18306—2001 [S]. Beijing: China Standards Press, 2001.
[33] 伊广丽. 基于规范设计谱和地震区设定谱的地震动记录选用研究 [D].哈尔滨工业大学, 2020.
YI Guangli. Research on selection and applications of ground motion records based on code design spectrum in seismic areas [D].Harbin Institute of Technology, 2020.
[34] Xie Junju, Li Kewei, Li Xiaojun, et al. VS30-based relationship for Chinese site classification [J]. Engineering Geology, 2023,324:107253.
[35] 方小丹, 魏琏, 周靖. 长周期结构地震反应的特点与反应谱 [J]. 建筑结构学报, 2014, 35(03): 16-23.
FANG Xiaodan, WEI Lian, ZHOU Jing. Characteristics of earthquake response for long-period structures and response spectrum [J]. Journal of Building Structures, 2014, 35(03): 16-23.
[36] ASCE/SEI 7-10 Minimum design loads for buildings and other structures[S]. American Society of Civil Engineers, 2013.
[37] Eurocode 8: design of structures for earthquake resistance[S]. Brussels: Belgium: European Committee for Standardizations, 2004.
[38] Fajfar Peter, Vidic Tomaž, Fischinger Matej. A measure of earthquake motion capacity to damage medium-period structures [J]. Soil Dynamics and Earthquake Engineering, 1990,9(5):236-242.
[39] Riddell Rafael, Garcia Jaime E. Hysteretic energy spectrum and damage control [J]. Earthquake Engineering & Structural Dynamics, 2001,30(12):1791-1816.
[40] 程光煜, 叶列平. 弹性SDOF系统的地震输入能量谱 [J]. 工程抗震与加固改造, 2006,(05): 1-8.
CHENG Guangyu, YE Lieping. Earthquake Input Energy Spectra of Elastic SDOF Systems [J]. Earthquake Resistant Engineering and Retrofitting, 2006,(05): 1-8.
[41] Gelfi P. SIMQKE-GR-Software for generating artificial accelerograms compatible with the response spectrum[EB/OL]. (2006-12-30)[2022-07-12]. http://dicata. ing. unibs. it/gelfi/software/programmi_studenti.
[42] The Mathworks Inc. MATLAB 2010a[EB/OL]. (2023-09-27)[2023-09-27]. http://www.mathworks.com.
[43] Uang Chia Ming, Bertero Vitelmo V. Evaluation of seismic energy in structures [J]. Earthquake engineering & structural dynamics, 1990,19(1):77-90.
[44] Chandramohan Reagan, Baker Jack W., Deierlein Gregory G. Quantifying the influence of ground motion duration on structural collapse capacity using spectrally equivalent records [J]. Earthquake Spectra, 2016,32(2):927-950.

PDF(3515 KB)

Accesses

Citation

Detail

段落导航
相关文章

/