Effects of support stiffness on random wind-induced response characteristics of structures with viscoelastic damping energy dissipation
LI Chuangdi1, JIANG Lifu1, GE Xinguang2, WANG Ruibo1, LI Yuxiang3
Author information+
.School of Civil Engineering and Architecture,Guangxi University of Science and Technology,Liuzhou 545006,China;
2.College of Civil and Architectural Engineering,Liuzhou Institute of Technology,Liuzhou 545616,China;
3.Wuhan Bridge Special Technology Co.,Wuhan 430200,China
In view of the complexity of response analysis of practical viscoelastic damping energy dissipation system under random wind-induced excitation and the lack of research on the influence of brace stiffness, a method for calculating the random wind-induced response moment and variance of the viscoelastic damping energy dissipation structure with braces is proposed, and the dynamic response characteristics of the bracing stiffness to the structure are analyzed. Firstly, according to the series relationship between viscoelastic damper and installation support, the equivalent differential constitutive equation of six-parameter practical viscoelastic damper is established. Secondly, the analytic solution of 0-2 order spectral moment (displacement, interstory displacement, damping force, bracing displacement) is derived by using complex mode method, virtual excitation method and power spectrum quadratic decomposition method. Finally, the accuracy of the proposed method is verified by a numerical example, and the influence of brace stiffness on the damping performance and structural reliability of viscoelastic dampers is studied. the results show that the greater the brace stiffness of the damper is, the more the damping performance of the damper can be brought into full play. it is necessary to consider the adverse effect of brace stiffness in engineering application.
LI Chuangdi1, JIANG Lifu1, GE Xinguang2, WANG Ruibo1, LI Yuxiang3.
Effects of support stiffness on random wind-induced response characteristics of structures with viscoelastic damping energy dissipation[J]. Journal of Vibration and Shock, 2024, 43(21): 211-221
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]YAO J T P. Concept of structural control[J]. Journal of the Structural Division,1972,98(7):1567-1574.
[2] 张 琼,杜永峰,朱前坤. 梁式结构受移动荷载作用非平稳随机振动的 DQ-PEM 方法[J]. 计算力学学报,2022,39(4):413-419.
ZHANG Qiong,DU Yongfeng,ZHU Qiankun. DQ-PEM method for unsteady random vibration of beam structures subjected to moving loads[J].Chinese Journal of Computational Mechanics,2022,39(4):413-419.
[3] 吴巧云,刘梓良,闫慧超,等. 中间隔震层位置变化对混合被动控制体系控制效果影响的试验研究[J]. 振动工程学报,2022,35(1):1-12.
WU Qiaoyun,LIU Ziliang,YAN Huichao,et al. Experimental study on the effect of the change of the location of the intervening seismic layer on the control effect of the hybrid passive control system[J]. Journal of Vibration Engineering,2022,35(1):1-12.
[4] MAHMOODI P,ROBERTSON L E,YONTAR M,et al. Performance of viscoelastic dampers in world trade center
towers[C]// Dynamics of structures. ASCE,1987:632-644.
[5] ELIAS S,RUPAKHETY R,OLAFSSON S. Analysis of a benchmark building installed with tuned mass dampers under wind and earthquake loads[J]. Shock and Vibration,2019,2019:1-13.
[6] SUN X,WU H,Wu Y,et al. Wind-induced responses and control of a Kilometer skyscraper with mass and viscous dampers[J]. Journal of Building Engineering,2021,43:102552.
[7] 邹万杰,刘美华,李创第,等. 基于胡聿贤谱的带支撑广义Maxwell阻尼隔震结构随机响应分析[J]. 力学学报,2022,54(9):2601-2615.
ZHOU Wanjie,LIU Meihua,LI Chuangdi,et al. Stochastic response analysis of generalized Maxwell damped isolated structures with braces under HU YUXIAN spectrum excitation[J]. Chinese Journal of Theoretical and Applied,2022,54(9):2601-2615.
[8] GRECO R,MARANO GC. Identification of parameters of Maxwell and Kelvin–Voigt generalized models for fluid viscous dampers[J]. Journal of Vibration and Control,2015,21(2):260-274.
[9] 李创第,李宇翔,杨雪峰,等. 六参数实用黏弹性阻尼结构基于Davenport风谱风振响应的复模态法[J].应用数学和力学,2023,44(3):248-259.
LI Chuangdi,LI Yuxiang,YANG Xuefeng,et al. A complex mode method for wind-induced responses of 6-parameter
practical viscoelastic damping energy dissipation structures
based on the davenport wind speed spectrum[J]. Applied Mathematics and Mechanics,2023,44(3):248-259.
[10] MAZZA F,VULCANO A. Control of the earthquake and wind dynamic response of steel-framed buildings by using additional braces and/or viscoelastic dampers[J]. Earthquake Engineering and Structural Dynamics,2011,40(2):155-174.
[11] 吴巧云,肖诗烨,朱宏平. 连接Kelvin阻尼器的对称双塔楼结构被动控制研究[J]. 土木工程学报,2018,51(S1):109-115.
WU Qiaoyun,XIAO Shiye,ZHU Hongping. Passive control research on symmetrical twin tower buildings connected with Kelvin dampers[J]. China Civil Engineering Journal,2018,51(S1):109-115.
[12] 李创第,陶欣欣,尉霄腾. Maxwell阻尼耗能隔震结构平稳响应分析[J]. 广西大学学报(自然科学版),2015,40(4):815-820.
LI Chuangdi,TAO Xinxin,YU Xiaoteng. Smooth response analysis of an isolated structure with a Maxwell damper[J]. Journal of Guangxi University(Natural Science Edition),2015,40(4):815-820.
[13] DAVENPORT A G. The spectrum of horizontal gustiness near the ground in high winds[J]. Quarterly Journal of the Royal Meteorological Society,1961,87(372):54-102.
[14] 李创第,昌明静,王博文. 实用黏弹性阻尼耗能系统非均匀非平稳巴斯金谱地震响应的一般精细解析解[J].应用力学学报,2021,38(2):776-786.
LI Chuangdi,CHANG Mingjing,WANG Bowen. General fine-grained analytical solution of the non-uniform non-smooth Baskin spectrum seismic response of practical viscoelastic damped energy dissipation systems[J]. Chinese Journal of Applied Mechanics,2021,38(2):776-786.
[15] 杨庆山,沈世钊. 悬索结构随机风振反应分析[J].建筑结构学报,1998(4):29-39.
YANG Qinshan,SHEN Shizhao. Analysis of random wind vibration response of suspended structures[J]. Journal of Building Structures,1998(4):29-39.
[16] FOURNIER J A, CHENG S. Impact of damper stiffness and damper support stiffness on the efficiency of a linear viscous damper in controlling stay cable vibrations[J]. Journal of Bridge Engineering,2014,19(4):04013022.
[17] ZHOU P,LIU M,Li H. A passive negative stiffness damper in series with a flexible support: theoretical and experimental study[J]. Structural Control and Health Monitoring,2020,27(9):e2594.
[18] 张敏,付熊,陈钰雪,等.带支撑粘弹性阻尼器耗能框架结构随机振动分析[J].计算力学学报,2021,38(1):37-45.
ZHANG Min,FU Xiong,CHEN Yuxue,et al.Random vibration analysis of energy dissipation frame structure installing viscoelastic dampers with supports[J].Chinese Journal of Computational Mechanics,2021,38(1):37-45.
[19] PREUMONT A. Vibration control of active structures:an introduction[M]. Springer,2018.
[20] 林家浩,张亚辉. 随机振动的虛拟激励法[M]. 北京:科学 出版社,2004.
LIN Jiahao,ZHANG Yahui. Virtual excitation method for random vibration[M]. Beijing:Science Press,2004.
[21] 林家浩,张亚辉,赵 岩. 虚拟激励法在国内外工程界的应用回顾与展望[J]. 应用数学和力学,2017,38(1):1-32.
LIN Jiahao,ZHANG Yahui,ZHAO Yan. The Pseudo-Excita
tion Method and Its Industrial Applications in China and Abroad [J]. Applied Mathematics and Mechanics,2017,38(01):1-32.
[22] 葛新广,龚景海,李创第. 线性结构基于Kanai-Tajimi谱的随机地震动响应分析的新解法[J].振动与冲击,2020,39(22):60-66.
GE Xinguang,GONG Jinghai,LI Chuangdi. Novel method for the random seismic response analysis of linear structures subjected to Kanai-Tajimi excitation[J]. Journal of Vibration and Shock ,2020,39(22):60-66.
[23] 葛新广,张梦丹,龚景海,等. 频响函数二次正交法在Davenport风速谱下结构系列响应简明封闭解的应用研究[J].振动与冲击,2021,40(21):207-214.
GE Xinguang,ZHANG Mengdan,GONG Jinghai,et al. Application of FRF quadratic orthogonal method in getting concise closed form solutions of structural series responses under Davenport wind speed spectrum[J]. Journal of Vibration and Shock.,2021,40(21):207-214.
[24] LI C D,Yang X F,Li Y X,et al. Wind vibration responses of structure with generalized Maxwell model viscoelastic dampers[J]. Structures,2023,47:425-433.
[25] 曹树谦,张文德,萧龙翔.振动结构模态分析[M].天津大学出版社,2014.
CAO Shuqian,ZHANG Wende,XIAO Longxiang. Modal Analysis of Vibrating Structures[M]. Tianjin University Press,2014.
[26] 楼文娟,胡鹏瑞,张跃龙.基于HFFB试验高耸结构风荷载谱高度修正系数及风振分析[J].振动与冲击,2023,42(18):39-45.
CAI Wenjuan,HU Pengrui,ZHANG Yuelong. Height correction factor of the wind load spectrum of towering structures based on HFFB tests and wind vibration analysis[J]. Journal of Vibration and Shock,2023,42(18):39-45.
[27] 毛吉化,聂竹林,汪大洋等.大跨索屋盖结构风振动力计算新方法研究[J].振动与冲击,2023,42(5):101-112.
MAO Jihua,LIE Zhulin,WANG Dayang,et al. Research on the new method of wind vibration force calculation for large-span cable roof structure[J].[J]. Journal of Vibration and Shock,2023,42(5):101-112.
[28] 李暾,张梦丹,姜琰,等.建筑结构基于巴斯金风速谱的系列风振响应的简明封闭解[J].计算力学学报,2021,38(6):739-747.
LI Tun,ZHANG Mengdan,JIANG Yan,et al. Concise closed-form solutions of random wind-induced vibration response of building structure based on Baskin wind speed spectrum[J]. Chinese Journal of Computational Mechanics,2021,38(6):739-747.
[29] 方同. 工程随机振动[M]. 北京: 国防工业出版社,1995.
FANG Tong. Random vibration in engineering[M]. Beijing:National Defense Industry Press,1995.
[30] 王修琼,崔剑峰.Davenport谱中系数K的计算公式及其工程应用[J].同济大学学报(自然科学版),2002,(7):849-852.
WANG Xiuqiong,CUI Jianfeng. Formula of Coefficient K in Expression of Davenport Spectrum and Its Engineering