液滴冲击振动亲水表面动力学试验研究

冯辰1, 2, 周航2, 张萌2, 陈新文2, 黄金佐2, 李兆华2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (21) : 277-283.

PDF(1625 KB)
PDF(1625 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (21) : 277-283.
论文

液滴冲击振动亲水表面动力学试验研究

  • 冯辰1,2,周航2,张萌2,陈新文2,黄金佐2,李兆华2
作者信息 +

Test study on dynamic behavior of droplet impact vibration

  • FENG Chen1,2, ZHOU Hang2, ZHANG Meng2, CHEN Xinwen2, HUANG Jinzuo2, LI Zhaohua2
Author information +
文章历史 +

摘要

液滴撞击现象广泛存在于自然界以及工程应用中。但韦伯数( )及激振力对液滴动力学的联合效应仍然未被充分探讨。为了充分探讨 以及激振力对液滴动力学的联合效应,本文利用高速相机研究了不同振动条件下单液滴撞击固体表面的动力学,探究了在 及激振力的影响下单液滴撞击的动力学行为。研究结果表明,大激振力工况下,液滴获得了克服粘附力的额外惯性力,液滴扩散得到了增强,但是随着激振力的降低,增强作用也下降。在 为33.25,激振力为62N时比激振力为0.23N时,液滴扩散增强了0.07。 能够增加液滴撞击相对速度,增强液滴相对撞击动量,从而促进液滴扩散。在 为33.25时的液滴的振动增强因子比 为13.87时平均增加了0.95。

Abstract

The droplet impact phenomenon widely exists in nature and engineering applications. However, the combined effects of Weber number( )and vibration force on droplet dynamics have not been fully explored. In order to fully explore the combined effects of   and vibration force on droplet dynamics, This paper uses a high-speed camera to study the dynamics of a single droplet impacting a solid surface under different vibration conditions, and explores the dynamic behavior of a single droplet impact under the influence of and vibration force. The research results show that under the condition of large excitation force, the droplets obtain additional inertial force to overcome the adhesion force, and the droplet diffusion is enhanced. However, as the excitation force decreases, the enhancement effect also decreases. The droplet spreading is enhanced by 0.07 at   of 33.25 and a vibrational force of 62N than at a vibrational force of 0.23N.   can increase the relative velocity of droplet impact and enhance the relative impact momentum of droplets, thus promoting droplet spreading. The vibration enhancement factor of the droplets at   of 33.25 increased on average by 0.95 compared to that at 13.87.

关键词

液滴撞击 / 激振力 / 扩散直径 / 扩散速度 / 韦伯数

Key words

droplet impact / vibratory force / spreading diameter / spreading velocity: weber number

引用本文

导出引用
冯辰1, 2, 周航2, 张萌2, 陈新文2, 黄金佐2, 李兆华2. 液滴冲击振动亲水表面动力学试验研究[J]. 振动与冲击, 2024, 43(21): 277-283
FENG Chen1, 2, ZHOU Hang2, ZHANG Meng2, CHEN Xinwen2, HUANG Jinzuo2, LI Zhaohua2. Test study on dynamic behavior of droplet impact vibration[J]. Journal of Vibration and Shock, 2024, 43(21): 277-283

参考文献

[1] 康  峰,吴潇逸,王亚雄等. 农药雾滴沉积特性研究进展与展望[J]. 农业工程学报,2021,37(20):1-14.
KANG Feng, WU Xiaoyi, WANG Yaxiong, et al. Research progress and prospect of pesticide droplet deposition characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(20):1-14.
[2] Yao Y, Wu K, Yang R, et al. Effects of surface temperature and Weber number on the dynamic and freezing behavior of impacting water droplets on a superhydrophobic ultra-cold surface[J]. Applied Thermal Engineering, 2024, 236: 121705.
[3] Du J, Li Y, Wang X, et al. Dynamics and heat transfer of water droplets impacting on heated surfaces: The role of surface structures in Leidenfrost point[J]. International Journal of Heat and Mass Transfer, 2023, 212: 124241.
[4] 高  荣,黄路生,文  晟等. 农药液滴在玉米叶片表面铺展面积的影响因素[J]. 农业工程学报,2022,38(20):41-48.
GAO Rong, HUANG Lusheng, WEN Sheng, et al. Factors influencing the spreading areas of pesticide droplets on the surface of maize leaves[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(20):41-48.
[5] Mishchenko L, Hatton B, Bahadur V, Taylor JA, Krupenkin T, Aizenberg J. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 2021;4(12):7699–707.
[6] 张  锐,刘一川,朱德兰等. 考虑射流破碎和液滴形状的喷灌水运动轨迹改进模型构建及验证[J]. 农业工程学报,2023,39(05):43-52.
ZHANG Rui,LIU Yichuan,ZHU Lande,et al.Construction and validation of the improved Ballistic model for sprinkler water trajectory considering jet fragmentation and droplet shape[J].Transactions of the Chinese Society of Agricultural Engineering,2023,39(05):43-52.
[7] 孙春华,宁  智,乔信起等. 气液两相流流型影响喷嘴喷雾形态及液滴粒径分布[J]. 农业工程学报,2019,35(12):29-37.
SUN Chunhua,NING Zhi,QIAO Qixin,et al.Gas-liquid two-phase flow pattern affecting spray shape and droplet size distribution[J].Transactions of the Chinese Society of Agricultural Engineering,2019,35(12):29-37.
[8] Josserand C, Thoroddsen ST. Drop impact on a solid surface. Annual Reviews,2016; 48:365–91.
[9] Wang X, Xu B, Guo S, et al. Droplet impacting dynamics: Recent progress and future aspects[J]. Advances in Colloid and Interface Science, 2023: 102919.
[10] Tang C, Qin M, Weng X, et al. Dynamics of droplet impact on solid surface with different roughness[J]. International Journal of Multiphase Flow, 2017, 96: 56-69.
[11] Lv C, Hao P, Zhang X, et al. Drop impact upon superhydrophobic surfaces with regular and hierarchical roughness[J]. Applied Physics Letters, 2016, 108(14).
[12] 罗黎明,贾志海. 液滴撞击高温梯度表面的动态行为特性[J]. 化工进展,2018,37(03):906-912.
LUO Liming, JIA Zhihai. Dynamic behavior of droplets impact on a hot microstructured surface with wetting gradient [J]. Chemical Industry and Engineering Progress, 2018, 37(03):906-912.
[13] 詹银晓,王  珂,南春苗等. 低韦伯数下液滴撞击固体表面的动力学行为研究[J]. 工业技术创新,2023,10(03):89-96.
ZHAN Xiaoyin, WANG Ke, NAN Chunmiao et al. Research on Dynamics of Droplets Impingement on Solid Surfaces at[J]. Industrial Technology Innovation, 2023, 10(03):89-96.
[14] 张春超,潘艳秋,杜宇杰等. 喷雾冷却中液滴撞击带气泡液膜的数值模拟[J].化工进展,2022,41(04):1735-1741.
ZHANG Chunchao, PAN Yanqiu, DU Yujie et al. Numerical simulation of droplet impacting liquid film with bubbles in spray cooling [J]. Chemical Industry and Engineering Progress, 2022, 41(04):1735-1741.
[15] Luo J, Chu F, Zhang J, et al. Re-spreading behavior of droplet impact on superhydrophobic surfaces at low Weber numbers[J]. Applied Physics Letters, 2023, 123(6).
[16] Moon J H, Choi C K, Allen J S, et al. Observation of a mixed regime for an impinging droplet on a sessile droplet[J]. International Journal of Heat and Mass Transfer, 2018, 127: 130-135.
[17] Gultekin A, Erkan N, Colak U, et al. Investigating the dynamics of droplet spreading on a solid surface using PIV for a wide range of Weber numbers[J]. Journal of Visualization, 2023: 1-9.
[18] Pillai R, Borg M K, Reese J M. Dynamics of nanodroplets on vibrating surfaces[J]. Langmuir, 2018, 34(39): 11898-11904.
[19] Sudo S, Goto A, Kuwano H, et al. The dynamic behavior of liquid droplets on vibrating plate[J]. Journal of the Japanese Society for Experimental Mechanics, 2010, 10(Special_Issue): s38-s45.
[20] Li J, Yang K, Liang Y, et al. Hydrodynamic analysis of the energy dissipation of droplets on vibrating superhydrophobic surfaces[J]. International Communications in Heat and Mass Transfer, 2022, 137: 106264.
[21] Chang T B, Chen R H. Experimental investigation into deposition/splashing behavior of droplets impacting vibrating surface[J]. Advances in Mechanical Engineering, 2017, 9(11): 1687814017730004.
[22] Sartori P, Quagliati D, Varagnolo S, et al. Drop motion induced by vertical vibrations[J]. New Journal of Physics, 2015, 17(11): 113017.
[23] Brunet P, Eggers J, Deegan R D. Motion of a drop driven by substrate vibrations[J]. The European Physical Journal Special Topics, 2009, 166(1): 11-14.
[24] Brunet P, Eggers J, Deegan R D. Motion of a drop driven by substrate vibrations[J]. The European Physical Journal Special Topics, 2009, 166(1): 11-14.
[25] Ashoke K R,K R J,Yi S, et al. Rebound suppression of a droplet impacting on an oscillating horizontal surface.[J]. Physical review. E,2016,94(2-1).
[26] 王美婷,祁影霞,陶  杰等. 纳米尺度下水液滴撞击固体表面润湿性行为的分子动力学模拟[J/OL]. 原子与分子物理学报,2025(02):97-103.
WANG Meiting, QI Yingxia, TAO Jie et al. Molecular dynamics simulation on wetting behavior of water droplets hitting solid surfaces at the nanoscale [J/OL]. Journal of Atomic and Molecular Physics, 2025(02):97-103.
[27] 张  泽,杨  松,刘秀芳等. 乙醇液滴冲击过冷水平壁面的铺展行为实验研究[J/OL]. 西安交通大学学报,2024(01):1-8.
ZHANG Yi, YANG Song, LIU Xiufang et al. Spreading Behavior of an Ethanol Droplet Impacts on a Supercooled Substrate[J/OL]. Journal of Xi'an Jiaotong University, 2024(01):1-8.
[28] 姚程炜,田远思,李二强. 气-液复合液滴撞击超疏水壁面的实验研究[EB/OL].[2022-12-06](2023-11-30).https://kns.cnki.net/kcms/detail//61.1112.O3.20221206.1516.005.html

PDF(1625 KB)

126

Accesses

0

Citation

Detail

段落导航
相关文章

/