基于遗传算法的阶梯式变间隙磁流变阻尼器优化设计

郭佳璇1, 张艳娟1, 2, 罗添洲1, 杨建伟1, 2, 李欣1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (21) : 291-299.

PDF(3146 KB)
PDF(3146 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (21) : 291-299.
论文

基于遗传算法的阶梯式变间隙磁流变阻尼器优化设计

  • 郭佳璇1,张艳娟1,2,罗添洲1,杨建伟1,2,李欣1
作者信息 +

Optimization design of stepped variable gap MR damper based on genetic algorithm

  • GUO Jiaxuan1, ZHANG Yanjuan1,2, LUO Tianzhou1, YANG Jianwei1,2, LI Xin1
Author information +
文章历史 +

摘要

针对用于下肢假肢的磁流变阻尼器阻尼力调节范围受限且体积大、能耗高的问题,提出了一种阶梯式变间隙磁流变阻尼器,该阻尼器可根据人体不同步态需求,通过控制线圈电流与改变阻尼间隙来调节输出阻尼力。阐述了阶梯式变间隙磁流变阻尼器的结构和工作原理,建立了阻尼力计算模型并进行了磁路分析。在满足下肢假肢阻尼力要求的前提下,以阻尼器功率最低、活塞体积最小为优化目标,采用多目标遗传算法对阶梯式变间隙阻尼器的关键结构参数进行优化,得到最优结构尺寸,对优化后的阻尼器进行磁场与力学性能仿真,验证优化结果的合理性。结果表明:优化后的阻尼器在满足输出阻尼力设计要求的条件下,总功率降低了23.3%,活塞体积减小了28.4%,为假肢用磁流变阻尼器的优化设计提供了参考。

Abstract

In response to the issues of constrained damping force adjustment range, large physical footprint, and heightened energy consumption associated with magneticrheological dampers (MRDs) utilized in lower limb prostheses, a novel solution is proposed: a stepped variable gap MRD. This damper is capable of modulating output damping force in accordance with diverse human gait requirements by controlling coil current and adjusting the damping gap.The structure and working principle of this type of MRD are described. A calculation model of damping force has been established and magnetic circuit analysis has been carried out. With the goal of meeting the requirements of damping force for lower limb prostheses while minimizing damper power and piston volume, a multi-objective genetic algorithm was employed to optimize the key structural parameters of the stepped variable gap MRD and obtain the optimal structural size. Magnetic field and mechanical properties of the optimized damper were then simulated to verify the rationality of the optimization results. These results demonstrate a 23.3% reduction in total power and a 28.4% reduction in piston volume, thus providing good reference for the optimization design of MRDs for prosthetic limbs.

关键词

磁流变阻尼器 / 结构设计 / 多目标优化 / 数值模拟

Key words

magnetorheological damper / structural design / multi-objective optimization / numerical simulation

引用本文

导出引用
郭佳璇1, 张艳娟1, 2, 罗添洲1, 杨建伟1, 2, 李欣1. 基于遗传算法的阶梯式变间隙磁流变阻尼器优化设计[J]. 振动与冲击, 2024, 43(21): 291-299
GUO Jiaxuan1, ZHANG Yanjuan1, 2, LUO Tianzhou1, YANG Jianwei1, 2, LI Xin1. Optimization design of stepped variable gap MR damper based on genetic algorithm[J]. Journal of Vibration and Shock, 2024, 43(21): 291-299

参考文献

[1] 国务院关于加快发展康复辅助器具产业的若干意见[J]. 中华人民共和国国务院公报. 2016(32): 39-43.
Several Opinions of the State Council on Accelerating the Development of the Rehabilitation Assistive Devices Industry[J]. State Council Communique of the People's Republic of China. 2016(32): 39-43.
[2] Liu G, Gao F, Wang D, et al. Medical applications of magnetorheological fluid: a systematic review[J]. Smart Materials and Structures. 2022, 31(4): 43002.
[3] Highsmith M J, Kahle J T, Carey S L, et al. Kinetic Differences Using a Power Knee and C-Leg While Sitting Down and Standing Up: A Case Report[J]. Journal of prosthetics and orthotics. 2010, 22(4): 237-243.
[4] 卢少波,赵路毅. 矩形凹结构转子磁流变阻尼器的设计与优化[J]. 振动与冲击. 2023, 42(10): 172-179.
LU Shao-bo, ZHAO Lu-yi. Design and optimization ofmagnetorheological damper for rotor with rectangular concave structure[J]. Journal of vibration and shock. 2023, 42(10): 172-179.
[5] Kumar S, Chandramohan S, Sujatha S. Optimal Design of Magnetorheological Valve Using the Coupling of FE Magnetic Analysis and MOGA Optimization for Prosthetic Ankle[J]. Journal of Vibration Engineering & Technologies. 2023.
[6] Hu G, Wu L, Deng Y, et al. Optimal design and performance analysis of magnetorheological damper based on multiphysics coupling model[J]. Journal of magnetism and magnetic materials. 2022, 558: 169527.
[7] 曹晓彦,于敏,周瑾,等. 可调旋转式流体阻尼器参数多目标优化设计[J]. 浙江大学学报(工学版). 2023: 1-11.
CAO Xiao-yan, YU Min, ZHOU Jin, et al. Multi-objective optimization design of adjustable rotary fluid damper parameter[J]. Journal of Zhejiang University (Engineering Science). 2023: 1-11.
[8] 吴波,陈照波,程明. 新型假肢膝关节的设计与仿真研究[J]. 机械设计与制造. 2015(06): 5-8.
WU Bo, CHENG Xi-bo, CHENG Ming. Design and Simulation of a New Prosthetic Knee Joint[J]. Machinery Design & Manufacture. 2015(06): 5-8.
[9] Nordin N D, Muthalif A G, M Razali M K. Control of transtibial prosthetic limb with magnetorheological fluid damper by using a fuzzy PID controller[J]. Journal of low frequency noise, vibration, and active control. 2018, 37(4): 1067-1078.
[10] Zuo Q, Zhao J, Mei X, et al. Design and Trajectory Tracking Control of a Magnetorheological Prosthetic Knee Joint[J]. Applied Sciences. 2021, 11(18): 8305.
[11] 胡国良,童旺,喻理梵. 阻尼间隙可调式磁流变阻尼器结构设计及动力性能分析[J]. 磁性材料及器件. 2020, 51(04): 18-23.
HU Guo-liang, TONG Wang, YU Li-fan. Structural design and dynamic characteristics analysis of magnetorheological damper with adjustable damping gap[J]. Journal of Magnetic Materials and Devices. 2020, 51(04): 18-23.
[12] 董小闵,邓雄,王陶,等. 双模式变间隙磁流变阻尼器研究[J]. 振动与冲击. 2023, 42(03): 129-138.
DONG Xiao-min, DENG Xiong, WANG Tao, et al. Dual-mode variable clearance MR damper[J]. Journal of vibration and shock. 2023, 42(03): 129-138.
[13] Zheng J, Li Y, Wang J. Design and multi-physics optimization of a novel magnetorheological damper with a variable resistance gap[J]. Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science. 2017, 231(17): 3152-3168.
[14] Yang X, Zhu J, Song Y, et al. Design and experimental research of stepped bypass magnetorheological damper[J]. Journal of intelligent material systems and structures. 2023: 1045389.
[15] 周云,谭平. 磁流变阻尼控制理论与技术[M]. 北京: 科学出版社, 2007: 38-39.
ZHOU Yun,TAN Ping. The Control Theory and Technology of Magnetorheological Damper [M]. Beijing: Science Press, 2007: 38-39.
[16] 强彦,柴铭堃,陈奕泽,等. 用于四连杆下假肢的孔隙结合式磁流变液阻尼器设计[J]. 液压与气动. 2022, 46(05): 94-102.
QIANG Yan, CHAI Ming-kun, CHEN Yi-ze, et al. Design of Pore Combined Magnetorheological Fluid Damper for Four Link Lower Prosthesis[J]. Chinese Hydraulics & Pneumatics. 2022, 46(05): 94-102.

PDF(3146 KB)

Accesses

Citation

Detail

段落导航
相关文章

/