基于参数尺度变换的多谐波自适应前馈主动控制方法

段宁远1, 2, 范文焜1, 宋怡欣1, 刘博1, 童宗鹏1, 2, 华宏星3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (21) : 300-309.

PDF(2949 KB)
PDF(2949 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (21) : 300-309.
论文

基于参数尺度变换的多谐波自适应前馈主动控制方法

  • 段宁远1,2,范文焜1,宋怡欣1,刘博1,童宗鹏1,2,华宏星3
作者信息 +

Multi-harmonic adaptive feedforward active control method based on parametric scale transformation

  • UAN Ningyuan1,2, FAN Wenkun1, SONG Yixin1, LIU Bo1, TONG Zongpeng1,2, HUA Hongxing3
Author information +
文章历史 +

摘要

螺旋桨脉动力会产生与轴频、叶频及倍频相关的周期激励信号,在频谱中表现为多个低频窄带线谱。此外,激励幅值、频率及相位会随着轴系转速、油膜润滑等条件的变化而产生未知波动,具有显著的时变特征。本文针对船舶动力系统的时变多谐波线谱振动特征,提出了一种基于参数尺度变换的自适应前馈主动控制方法。基于多跨多支承推进轴系动力学模型,进行了多谐波自适应前馈算法仿真验证,实现了对多个未知窄带干扰的有效衰减。考虑通道耦合响应关系,建立了多输入-多输出系统的多通道振动主动控制策略,开展了多通道交叉耦合谐波振动控制效果分析。结果表明,本文所提出的基于参数尺度变换的自适应前馈主动控制方法对多跨多支承推进轴系的时变多线谱振动具有良好的控制效果。

Abstract

The pulsation force of the propeller related to the shaft frequency, blade frequency, and doubling frequencies excites multi-narrowband low-frequency line-spectrum vibrations of the shafting system. The pulsation force’s amplitude, frequency, and phase fluctuate with time considering variations in the shaft speed, oil film lubrication, and other conditions. This paper proposes an adaptive feedforward control method based on the parameter scale transformation for the time-varying multi-harmonic line-spectrum vibrations of the shafting system. Based on the multi-span and multi-support propulsion shaft model, simulation verification of the multi-harmonic adaptive feedforward control algorithm was conducted, achieving balanced attenuation of multiple narrowband interferences. Considering the channel coupling effect, the multi-channel active vibration control strategy for the multi-input multi-output system was established, and the control performance of the multi-channel cross-coupling tonal vibrations was analyzed. The results indicate that the adaptive feedforward control method proposed has a good control effect on time-varying multi-tonal vibrations of the propulsion shafting system.

关键词

主动控制 / 前馈控制 / 自适应算法 / 线谱振动 / 尺度变换

Key words

active control / feedforward control / adaptive algorithm / tonal vibrations / scale transformation

引用本文

导出引用
段宁远1, 2, 范文焜1, 宋怡欣1, 刘博1, 童宗鹏1, 2, 华宏星3. 基于参数尺度变换的多谐波自适应前馈主动控制方法[J]. 振动与冲击, 2024, 43(21): 300-309
UAN Ningyuan1, 2, FAN Wenkun1, SONG Yixin1, LIU Bo1, TONG Zongpeng1, 2, HUA Hongxing3. Multi-harmonic adaptive feedforward active control method based on parametric scale transformation[J]. Journal of Vibration and Shock, 2024, 43(21): 300-309

参考文献

[1] 俞孟萨, 林立. 船舶水下噪声研究三十年的基本进展及若干前沿基础问题[J]. 船舶力学, 2017, 21(02): 244-248.
Yu M S, Lin L. Some progresses of underwater noise of ships in the recent thirty years and several new basic problems[J]. Journal of Ship Mechanics, 2017, 21(02): 244-248.
[2] 吕世金, 俞孟萨, 李东升. 水下航行体水动力辐射噪声预报方法研究[J]. 水动力学研究与进展A辑, 2007(04): 475-482.
Lv S J, Yu M S, Li D S. Prediction of hydrodynamic radiation noise of underwater vehicle[J]. Journal of Hydrodynamics A, 2007(04): 475-482.
[3] 俞孟萨, 黄国荣, 伏同先. 潜艇机械噪声控制技术的现状与发展概述[J]. 船舶力学, 2003(04): 110-120.
Yu M S, Huang G R, Fu T X. Development review on mechanical-noise control for submarine[J]. Journal of Ship Mechanics, 2003(04): 110-120.
[4] 华宏星, 俞强. 船舶艉部激励耦合振动噪声机理研究进展与展望[J]. 中国舰船研究, 2017, 12(04): 6-16.
Hua H X, Yu Q. Structural and acoustic response due to excitation from ship stern: overview and suggestions for future research[J]. Chinese Journal of Ship Research, 2017, 12(04): 6-16.
[5] 徐鉴. 振动控制研究进展综述[J]. 力学季刊, 2015, 36(04): 547-565.
Xu J. Advances of research on vibration control[J]. Chinese Quarterly of Mechanics, 2015, 36(04): 547-565.
[6] Xie X L, Qin H, Xu Y L, et al. Lateral vibration transmission suppression of a shaft-hull system with active stern support[J]. Ocean Engineering, 2019, 172: 501-510.
[7] Xie X L, Ren M K, Zhu Y Y, et al. Simulation and experiment on lateral vibration transmission control of a shafting system with active stern support[J]. International Journal of Mechanical Sciences, 2020, 170: 105363.
[8] Xie X L, Yang D Q, Wu D, et al. Theoretical analysis on vibration transmission control in a shaft-hull system excited by propeller forces via an active multi-strut assembly[J]. Ocean Engineering, 2021, 221: 108511.
[9] Xie X L, Yang D Q, Ren M K, et al. Vibration transmission control of a flexible shaft-bearing system using active/passive support[J]. Ocean Engineering, 2022, 264: 112450.
[10] Lewis D W, Allaire P E, Thomas P W. Active magnetic control of oscillatory axial shaft vibrations in ship shaft transmission systems part 1: system natural frequencies and laboratory scale model[J]. Tribology transactions, 1989, 32(2): 170-178.
[11] Lewis D W, Humphris R R, Thomas P W. Active magnetic control of oscillatory axial shaft vibrations in ship shaft transmission systems part 2: control analysis and response of experimental system[J]. Tribology transactions, 1989, 32(2): 179-188.
[12] Baz A, Gilheany J, Steimel P. Active vibration control of propeller shafts[J]. Journal of Sound and Vibration, 1990, 136(3): 361-372.
[13] 胡芳. 推进轴系纵向振动主动控制方法研究[D]. 上海: 上海交通大学, 2015.
Hu F. Research on active control of the longitudinal vibration of propulsion shafting systems[D]. Shanghai: Shanghai Jiao Tong University, 2015.
 [14] Qin H, Yang D Q, Zheng H B, et al. Elimination of friction-induced vibration of a propulsion shafting system by auxiliary electromagnetic suspension[J]. Journal of Vibration and Control, 2020, 26(17-18): 1549-1559.
[15] 谢溪凌, 任明可, 黄修长, et al. 基于主动艉支承的推进轴系横向振动抑制仿真与实验研究[J]. 振动与冲击, 2020, 39(15): 271-276.
Xie X L, Ren M K, Huang X C, et al. Simulation and tests for lateral vibration transmission suppression of a propulsion shafting system based on active stern support[J]. Journal of Vibration and Shock, 2020, 39(15): 271-276.
[16] Zhu Y Y, Xie X L, Zhang Z Y. Investigation on vibration transmission control of a shafting system with active orthogonal support[J]. Journal of Vibration and Control, 2022, 28(11-12): 1453-1469.
[17] Yang D Q, Zhu Y Y, Xie X L, et al. Active vibration suppression at bearing pedestals in an elastically supported shafting system via non-contact electromagnetic actuators[J]. Journal of Vibration and Control, 2022, 0(0): 10775463221122119.
[18] Widrow B, Glover J R, Mccool J M, et al. Adaptive noise cancelling: principles and applications[J]. Proceedings of the IEEE, 1975, 63(12): 1692-1716.
[19] Morgan D. An analysis of multiple correlation cancellation loops with a filter in the auxiliary path[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1980, 28(4): 454-467.
[20] Elliott S, Stothers I, Nelson P. A multiple error LMS algorithm and its application to the active control of sound and vibration[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(10): 1423-1434.
[21] Bodson M, Sacks A, Khosla P. Harmonic generation in adaptive feedforward cancellation schemes[J]. Ieee Transactions on Automatic Control, 1994, 39(9): 1939-1944.
[22] Pigg S, Bodson M. Adaptive algorithms for the rejection of sinusoidal disturbances acting on unknown plants[J]. Ieee Transactions on Control Systems Technology, 2010, 18(4): 822-836.
[23] Chung C H, Chen M S. A robust adaptive feedforward control in repetitive control design for linear systems[J]. Automatica, 2012, 48(1): 183-190.
[24] Chang D C, Chu F T. Feedforward active noise control with a new variable tap-length and step-size filtered-X LMS algorithm[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(2): 542-555.
[25] Yang T J, Sun Y, Zhou L B, et al. Practical demonstration of a large-scale active vibration isolation system[J]. Case Studies in Mechanical Systems and Signal Processing, 2015, 1: 32-37.
[26] Ren M K, Xie X L, Zhang Z Y. Subband reinforced adaptive feedback control algorithm in mechanical vibration control[J]. Journal of Vibration and Control, 2022, 29(6): 10775463211051451.
[27] Dotsch H G M, Smakman H T, Hof P M J V D, et al. Adaptive repetitive control of a compact disc mechanism[C]. Proceedings of the 34th IEEE Conference on Decision and Control, 1995: 1720-1725.
[28] Zhang Z Y, Hu F, Hua H X. Simulation and experiment on active vibration isolation with an adaptive method[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2010, 224(3): 225-238.
[29] Fedele G, Ferrise A. Biased sinusoidal disturbance rejection with plant uncertainty via an adaptive third-order generalized integrator[C]. 20th Mediterranean Conference on Control and Automation (MED), 2012: 253-258.
[30] Zhu Q, Yue J Z, Liu W Q, et al. Active vibration control for piezoelectricity cantilever beam: an adaptive feedforward control method[J]. Smart Materials and Structures, 2017, 26(4): 047003.

PDF(2949 KB)

109

Accesses

0

Citation

Detail

段落导航
相关文章

/