指数型函数描述常规武器爆炸荷载更为精准,为研究该函数形状参数与阻尼比对梁构件动力系数的影响,按等效单自由度简化体系分别建立了柔性梁构件和刚性梁构件的动力响应微分方程,并求解了弹塑性阶段含动力系数的振动位移理论解。采用此理论解完成了形状参数取值1⁓2、阻尼比取值0.001⁓0.1、延性比取值1⁓4范围内共48种典型工况下动力系数的计算,并进一步通过现行抗爆设计规范公式、有限元分析的动力系数完成了算例验证及误差分析,说明了所推导理论解答的可行性。研究结果表明:所求理论解与抗爆设计规范计算结果趋势相同,规范公式整体上较为保守;形状参数和阻尼比的增大均对动力系数有降低作用,阻尼比的影响作用更大,形状参数对刚性梁构件的影响大于柔性梁构件。
Abstract
Exponential function is used to accurately describe the blast loading of conventional weapons. In order to study the effect of the shape parameter of this function and damping ratio on the dynamic factor of beam member, the vibrational differential equations for flexible and rigid beam members were respectively established by the equivalent single degree of freedom (SDOF) systems. The theoretical solutions of vibration displacements with dynamic factor in the elastic-plastic stage were solved. A total of 48 typical calculation cases about dynamic factor was designed and finished. For the calculation cases, shape parameter ranged from 1⁓2, damping ratio ranged from 0.001⁓0.1, and ductility ratio ranged from 1⁓4. Furthermore, the verification example and error analysis were completed by the formula of the current blast-resistant design code and by the finite element method analysis. Verification displayed the feasibility of the theoretical solution. The results show that the trend of derived formula solution is the same as that of the blast-resistant design code. The results of code formula are lower than those in derived formula. Both the shape parameter and damping ratio have an effect of reducing the value of dynamic factor. The damping ratio behaves more significant effect. The effect of shape parameter on rigid beam member is greater than that on flexible beam member.
关键词
指数型爆炸荷载 /
形状参数 /
阻尼比 /
动力系数
{{custom_keyword}} /
Key words
exponential blast loading /
shape parameter /
damping ratio /
dynamic factor
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Biggs M. Introduction to structure dynamics[M]. New York: McGraw-Hill Book Company,1964:315-327.
[2] 杨科之,王年桥,史维汾,等. 化爆条件下地面结构等效静载计算方法[J]. 防护工程,2001,23(2): 1-7.
YANG Ke-zhi, WANG Niao-qiao, SHI Wei-fen, et al. Equivalent static load calculation method for ground structures under chemical explosion [J]. Protective Engineering, 2001, 23(2): 1-7.
[3] 徐金星,唐柏鉴,王飞. 平面钢框架-预应力索支撑结构断索动效应分析[J]. 钢结构,2018,33(1): 6-10.
XU Jin-xing, TANG Bai-jian, WANG Fei. Analysis of dynamic effects on a single-story pre-stressed cable-stayed steel frame caused by sudden cable failure [J]. Steel Construction, 2018, 33(1): 6-10.
[4] Amabili M,Balasubramanian P,Garziera R,et al. Blast loads and nonlinear vibrations of laminated glass plates in an enhanced shear deformation theory[J]. Composite Structures,
2020,252:112720.
[5] Chen W,Pan J,Guo Z,et al. Damage evaluations of fire-damaged RPC-FST columns under blast loading[J]. Thin-
Walled Structures,2019,134,319-332.
[6] Li Y,Aoude H. Effects of detailing on the blast and post-blast resilience of high-strength steel reinforced concrete (HSS-RC) beams[J]. Engineering Structures,2020,219:110869.
[7] 刘思嘉,陈力,冯彬. 爆炸荷载作用下钢梁动力响应的相似分析方法[J/OL]. 建筑结构学报,2024,45(01): 1-10.
LIU Si-jia, CHEN Li, FENG Bin. A similarity analysis method for dynamic response of steel beam under blast loading [J/OL]. Journal of Building Structures, 2024, 45(01): 1-10.
[8] Geng S,Wei Y,Wang W. Dynamic increase factor of an equivalent SDOF structural system for beams with different support conditions under conventional blast loading[J]. Journal of Engineering Mechanics,2021,147(4):06021002.
[9] 赵洲. 空爆作用下含阻尼线性强化抗力模型梁构件动力系数研究[D]. 中北大学,2023.
ZHAO Zhou. Study on dynamic coefficients of linear reinforced resistance model beam members with damping under air blast loading [D]. North university of China, 2023.
[10] 焦燏烽,赵果,侯延利. 框架柱在爆炸冲击荷载作用下动力系数及破坏模式研究[J]. 建筑科学,2015,31(09): 32-37.
JIAO Yu-feng, ZHAO Guo, HOU Yan-li. Dynamic factor and failure modes research of the frame column under blast pressure [J]. Building Science, 2015, 31(09): 32-37.
[11] 朱淦. 抗爆墙结构动力特性对爆炸冲击波超压峰值的影响规律研究[D]. 南京理工大学,2021.
ZHU Gan. Study on the influence of the dynamic characteristics of antiknock wall structure on the overpressure peak value of explosion shock wave [D]. Nanjing University of Science and Technology, 2021.
[12] 樊源,陈力,任辉启,等. 起波配筋RC梁抗爆作用机理及抗力动力系数的理论计算方法[J]. 爆炸与冲击,2019,39(03): 123-134.
FAN Yuan, CHEN Li, REN Hui-qi, et al. Blast-resistant mechanism of RC beam with kinked rebar and calculation method of dynamic resistance coefficient [J]. Explosion and Shock Waves, 2019, 39(03): 123-134.
[13] 刘榕,耿少波,贺耀北. 建筑结构化爆作用级数型荷载动力系数研究[J]. 振动与冲击,2021,40(23): 51-57.
LIU Rong, GENG Shao-bo, HE Yao-bei. Dynamic coefficient of series chemical blast load in building structure [J]. Journal of Vibration and Shock, 2021, 40(23): 51-57.
[14] SHI-DA X U,Chen T X,Liu J Q,et al. Exponential decay law of acoustic emission and microseismic activities caused by disturbances associated with multilevel loading and mining blast[J]. Transactions of Nonferrous Metals Society of China,2021,31(11):3549-3563.
[15] Louca L A, Punjani M, Harding J E. Non-linear analysis of blast walls and stiffened panels subjected to hydrocarbon explosions[J]. Journal of Constructional Steel Research,1996,
37(2):93-113.
[16] 耿少波,葛培杰,李洪,等. 爆炸荷载结构等效静载动力系数研究[J]. 兵工学报,2019,40(10): 2088-2095.
GENG Shao-bo, GE Pei-jie, LI Hong, et al. Equivalent Static Load Dynamic Coefficient for Blast Load [J]. Acta Armamentarii, 2019, 40(10): 2088-2095.
[17] 朱大鹏,何磊. 爆破荷载下桩周岩体破坏模式及稳定性研究[J]. 安全与环境工程,2022,29(04): 196-204.
ZHU Da-peng, HE Lei. Study on Failure Mode and Stability of Rock Mass around Anti-slide Piles under Blasting Load [J]. Safety and Environmental Engineering, 2022, 29(04): 196-204.
[18] Gantes C J,Pnevmatikos N G. Elastic–plastic response spectra for exponential blast loading[J]. International Journal of Impact Engineering,2004,30(3):323-343.
[19] 中华人民共和国建设部,中华人民共和国国家质量监督检验检疫总局. 人民防空地下室设计规范: GB 50038—2005[S]. 北京:国标图集出版社,2006.
[20] 方秦,柳锦春. 地下防护结构[M]. 北京:中国水利水电出版社,2010.
FANG Qin, LIU Jin-chun. Underground protective structure [M]. Bei Jing: China Water & Power Press, 2010.
[21] Nassr A A, Razaqpur G A, Tait J M, et al. Experimental performance of steel beams under blast loading[J]. Journal of Performance of Constructed Facilities,2012,26(5):600-619.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}