基于混合有限元-边界元的声振系统多材料拓扑优化方法研究

林心玥1, 赵文畅1, 操小龙2, 陈海波1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (22) : 106-117.

PDF(1968 KB)
PDF(1968 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (22) : 106-117.
论文

基于混合有限元-边界元的声振系统多材料拓扑优化方法研究

  • 林心玥1,赵文畅1,操小龙2,陈海波*1
作者信息 +

Multi-material topology optimization method of acoustic-structure interaction systems based on mixed FEM-BEM

  • LIN Xinyue1,ZHAO Wenchang1,CAO Xiaolong2,CHEN Haibo*1
Author information +
文章历史 +

摘要

针对结构和外声场相互作用的声振强耦合系统,建立了基于混合有限元-边界元的多材料拓扑优化设计方法。为处理优化过程中声振耦合面的变化,设置固定的虚拟界面将计算域划分为有界域和无界域,分别由混合位移-压力有限元方法(混合有限元方法)和边界元方法进行离散。运用混合有限元方法能够避免对声振耦合面的显式表征,且能使有限元与边界元离散交界面固定不变,有效减少计算成本。运用有序固体各向同性材料惩罚模型(Ordered-SIMP),建立单一设计变量下的多材料拓扑优化模型。以结构的辐射声功率级作为优化的目标函数,并采用伴随变量法进行灵敏度分析,最后通过移动渐进线优化算法(MMA)对优化问题进行求解。通过基于Heaviside函数的分段投影密度滤波器进行优化后处理,得到数值稳定的多材料优化设计。数值模拟表明,本文建立的多材料优化方法不仅具有高优化灵活度,同时可以降低声振耦合系统的辐射声功率级,是一个有效的拓扑优化方法。

Abstract

A multi-material topology optimization method based on mixed finite element method-boundary element method is proposed for acoustic–structure interaction (ASI) systems in external acoustic field. To handle the changing coupling interface during optimization, a fixed virtual interface is introduced to divide the computational domain into bounded and unbounded domains. The bounded domain is discretized with the mixed displacement-pressure finite element method (Mixed FEM), while the unbounded domain is discretized with the boundary element method (BEM). The mixed FEM avoids explicitly representing the acoustic-structural coupling interface and maintains a fixed discretized boundary between the finite element method-boundary element method, resulting in reduced computational costs. The ordered-solid isotropic material with penalization model is employed to establish a multi-material topology optimization model within the bounded domain under a single design variable. The optimization problem adopts the structural radiated sound power level as the objective function and employs the adjoint variable method for sensitivity analysis. Finally, the optimization problem is solved using the method of moving asymptotes (MMA). A post-processing step using a piecewise projected density filter based on Heaviside function is applied to obtain numerically stable multi-material optimization designs. Numerical simulation demonstrate that the proposed multi-material optimization method not only has high optimization flexibility, but also can reduce the radiated sound power level of acoustic-structure interaction system, which is an effective topology optimization method.

关键词

声振耦合系统 / 拓扑优化 / 混合有限元 / 边界元 / 多材料设计

Key words

acoustic-structure interaction system / topology optimization / mixed finite element method / boundary element method / multi material design

引用本文

导出引用
林心玥1, 赵文畅1, 操小龙2, 陈海波1. 基于混合有限元-边界元的声振系统多材料拓扑优化方法研究[J]. 振动与冲击, 2024, 43(22): 106-117
LIN Xinyue1, ZHAO Wenchang1, CAO Xiaolong2, CHEN Haibo1. Multi-material topology optimization method of acoustic-structure interaction systems based on mixed FEM-BEM[J]. Journal of Vibration and Shock, 2024, 43(22): 106-117

参考文献

[1] DU J B, OLHOFF N. Minimization of sound radiation from vibrating bi-material structures using topology optimization [J]. Structural and Multidisciplinary Optimization, 2007, 33(4-5): 305-321.
[2] DU J B, YANG R Z. Vibro-acoustic design of plate using bi-material microstructural topology optimization [J]. Journal of Mechanical Science and Technology, 2015, 29(4): 1413-1419.
[3] LIANG X, DU J B. Concurrent multi-scale and multi-material topological optimization of vibro-acoustic structures [J]. Computer Methods in Applied Mechanics and Engineering, 2019, 349: 117-148.
[4] DU J B, SUN C C. Reliability-based vibro-acoustic microstructural topology optimization [J]. Structural and Multidisciplinary Optimization, 2016, 55(4): 1195-1215.
[5] ZHANG X P, KANG Z. Topology optimization of damping layers for minimizing sound radiation of shell structures [J]. Journal of Sound and Vibration, 2013, 332(10): 2500-2519.
[6] SHU L, YU WANG M, MA Z D. Level set based topology optimization of vibrating structures for coupled acoustic–structural dynamics [J]. Computers & Structures, 2014, 132: 34-42.
[7] CHEN N, YU D J, XIA B Z, et al. Microstructural topology optimization of structural-acoustic coupled systems for minimizing sound pressure level [J]. Structural and Multidisciplinary Optimization, 2017, 56(6): 1259-1270.
[8] 郑文治, 陈海波, 操小龙. 考虑材料性能不确定性的声振强耦合系统稳健拓扑优化 [J]. 振动与冲击, 2023, 42(22): 93-102.
ZHENG Wen-zhi, CHEN Hai-bo, CAO Xiao-long. Robust topology optimization of strongly coupled structural-acoustic systems considering material properties uncertainty [J]. Journal of vibration and shock, 2023, 42(22): 93-102.
[9] BENDSOE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method [J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224.
[10] SIGMUND O, CLAUSEN P M. Topology optimization using a mixed formulation: An alternative way to solve pressure load problems [J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(13-16): 1874-1889.
[11] YOON G H, JENSEN J S, SIGMUND O. Topology optimization of acoustic–structure interaction problems using a mixed finite element formulation [J]. International Journal for Numerical Methods in Engineering, 2007, 70(9): 1049-1075.
[12] KOOK J. Evolutionary topology optimization for acoustic-structure interaction problems using a mixed u/p formulation [J]. Mechanics Based Design of Structures and Machines, 2019, 47(3): 356-374.
[13] EVERSTINE G C, HENDERSON F M. Coupled finite element/boundary element approach for fluid–structure interaction [J]. The Journal of the Acoustical Society of America, 1990, 87(5): 1938-1947.
[14] SCHNEIDER S. FE/FMBE coupling to model fluid–structure interaction [J]. International Journal for Numerical Methods in Engineering, 2008, 76(13): 2137-2156.
[15] BETTESS P. INFINITE ELEMENTS [J]. International Journal for Numerical Methods in Engineering, 1977, 11(1): 53-64.
[16] BERENGER J P. A PERFECTLY MATCHED LAYER FOR THE ABSORPTION OF ELECTROMAGNETIC-WAVES [J]. Journal of Computational Physics, 1994, 114(2): 185-200.
[17] KELLER J B, GIVOLI D. EXACT NON-REFLECTING BOUNDARY-CONDITIONS [J]. Journal of Computational Physics, 1989, 82(1): 172-192.
[18] FRITZE D, MARBURG S, HARDTKE H-J. FEM–BEM-coupling and structural–acoustic sensitivity analysis for shell geometries [J]. Computers & Structures, 2005, 83(2-3): 143-154.
[19] ZHAO W C, ZHENG C J, LIU C, et al. Minimization of sound radiation in fully coupled structural-acoustic systems using FEM-BEM based topology optimization [J]. Structural and Multidisciplinary Optimization, 2018, 58(1): 115-128.
[20] ZHAO W C, CHEN L L, CHEN H B, et al. An effective approach for topological design to the acoustic–structure interaction systems with infinite acoustic domain [J]. Structural and Multidisciplinary Optimization, 2020, 62(3): 1253-1273.
[21] 范小南. BESO算法灵敏度权重分析与新型结构设计探讨[D]. 湖南大学, 2018.
[22] 杜善义. 先进复合材料与航空航天 [J]. 复合材料学报, 2007, (01): 1-12.
Du Shan-yi. Advanced composite materials and aerospace engineering [J]. Acta Materiae Compositae Sinica, 2007, (01): 1-12 
[23] BENDSOE M P, SIGMUND O. Material interpolation schemes in topology optimization [J]. Archive of Applied Mechanics, 1999, 69(9-10): 635-654.
[24] TAVAKOLI R, MOHSENI S M. Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation [J]. Structural and Multidisciplinary Optimization, 2013, 49(4): 621-642.
[25] WANG M Y, WANG X M. “Color” level sets: a multi-phase method for structural topology optimization with multiple materials [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(6-8): 469-496.
[26] ZHANG W S, SONG J F, ZHOU J H, et al. Topology optimization with multiple materials via moving morphable component (MMC) method [J]. International Journal for Numerical Methods in Engineering, 2017, 113(11): 1653-1675.
[27] 张宪民, 胡凯, 王念峰, 等. 基于并行策略的多材料柔顺机构多目标拓扑优化 [J]. 机械工程学报, 2016, 52(19): 1-8.
ZHANG Xian-min, HU Kai, WANG Nian-feng, et al. Multi-objective Topology Optimization of Multiple Materials Compliant Mechanisms Based on Parallel Strategy [J]. Jouranl of mechanical engineering, 2016, 52(19): 1-8.
[28] ZUO W J, SAITOU K. Multi-material topology optimization using ordered SIMP interpolation [J]. Structural and Multidisciplinary Optimization, 2016, 55(2): 477-491.
[29] XU S Z, LIU J K, ZOU B, et al. Stress constrained multi-material topology optimization with the ordered SIMP method [J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113453.
[30] CHU S, GAO L, XIAO M, et al. Multiscale topology optimization for coated structures with multifarious-microstructural infill [J]. Structural and Multidisciplinary Optimization, 2019, 61(4): 1473-1494.
[31] 杜义贤, 李涵钊, 谢黄海, 等. 基于序列插值模型和多重网格方法的多材料柔性机构拓扑优化 [J]. 机械工程学报, 2018, 54(13): 47-56.
DU Yi-xian, LI Han-zhao, XIE Huang-hai, et al. Topology Optimization of Multiple Materials Compliant Mechanisms Based on Sequence Interpolation Model and Multigrid Method. [J]. Jouranl of mechanical engineering, 2018, 54(13): 47-56.
[32] 赵清海, 张洪信, 蒋荣超, 等. 考虑载荷不确定性的多材料结构稳健拓扑优化 [J]. 振动与冲击, 2019, 38(19): 182-190.
ZHAO Qing-hai, ZHANG Hong-xin, JIANG Rong-chao, et al. Robust topology optimization design of a multi-material structure considering load uncertainty. [J]. Journal of vibration and shock, 2019, 38(19): 182-190.
[33] BURTON A J, MILLER G F. APPLICATION OF INTEGRAL EQUATION METHODS TO NUMERICAL SOLUTION OF SOME EXTERIOR BOUNDARY-VALUE PROBLEMS [J]. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1971, 323(1553): 201-210.
[34] MARBURG S. A Unified Approach to Finite and Boundary Element Discretization in Linear Time–Harmonic Acoustics [M]//MARBURG S, NOLTE B. Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods. Berlin, Heidelberg; Springer Berlin Heidelberg. 2008: 1-34.
[35] ZHAO W C, CHEN L L, CHEN H B, et al. Topology optimization of exterior acoustic‐structure interaction systems using the coupled FEM‐BEM method [J]. International Journal for Numerical Methods in Engineering, 2019, 119(5): 404-431.
[36] XU S L, CAI Y W, CHENG G D. Volume preserving nonlinear density filter based on heaviside functions [J]. Structural and Multidisciplinary Optimization, 2009, 41(4): 495-505.
[37] WANG W F, LAZAROV B S, SIGMUND O. On projection methods, convergence and robust formulations in topology optimization [J]. Structural and Multidisciplinary Optimization, 2010, 43(6): 767-784.
[38] GU X C, HE S M, DONG Y H, et al. An improved ordered SIMP approach for multiscale concurrent topology optimization with multiple microstructures [J]. Composite Structures, 2022, 287: 115363.
[39] LIU J K, MA Y S. A survey of manufacturing oriented topology optimization methods [J]. Advances in Engineering Software, 2016, 100: 161-175.
[40] LOPEZ C, BURGGRAEVE S, LIETAERT P, et al. Model-based, multi-material topology optimization taking into account cost and manufacturability [J]. Structural and Multidisciplinary Optimization, 2020, 62(6): 2951-2973.
[41] OLHOFF N, BENDSOE M P, RASMUSSEN J. ON CAD-INTEGRATED STRUCTURAL TOPOLOGY AND DESIGN OPTIMIZATION [J]. Computer Methods in Applied Mechanics and Engineering, 1991, 89(1-3): 259-279.
[42] 王博, 周演, 周昳鸣. 面向连续体拓扑优化的多样性设计求解方法 [J]. 力学学报, 2016, 48(04): 984-993.
Wang Bo, Zhou Yan, Zhou Yi-ming. Multiple designs approach for continuum topology optimization. [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(04): 984-993.

PDF(1968 KB)

Accesses

Citation

Detail

段落导航
相关文章

/