具有波浪形桨尖构造的无人机旋翼降噪研究

张小正, 王雅洁, 李家柱, 毕传兴, 徐滢

振动与冲击 ›› 2024, Vol. 43 ›› Issue (22) : 135-145.

PDF(2387 KB)
PDF(2387 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (22) : 135-145.
论文

具有波浪形桨尖构造的无人机旋翼降噪研究

  • 张小正*,王雅洁,李家柱,毕传兴,徐滢
作者信息 +

Noise reduction of the unmanned aerial vehicle rotor with wavy tip structure

  • ZHANG Xiaozheng*,WANG Yajie,LI Jiazhu,BI Chuanxing,XU Ying
Author information +
文章历史 +

摘要

旋翼作为无人机噪声的重要来源,降低其气动噪声对于提高公众对无人机的接受度具有重要意义。鉴此,提出一种具有波浪形桨尖构造的旋翼设计方案,该方案仅在旋翼桨尖处以特定波浪线型为导线进行放样设计,同时耦合波浪形前缘、波浪形尾缘和波浪表面结构三种特征,该方案可在降低噪声的同时,最大程度保留旋翼气动性能。随后通过CFD仿真以及实验研究分析波浪形桨尖构造对旋翼气动性能以及气动噪声的影响,揭示其降噪机理,并开展波浪形桨尖参数优化设计。仿真和实验结果表明,具有波浪形桨尖构造的旋翼仍然具有较好的气动性能;在声学性能方面,波浪形桨尖构造降低了旋翼中高频范围内的宽带噪声,其中波形参数N=8的旋翼降噪效果最好,并在旋翼下洗流附近降噪显著,总声压级较Base旋翼下降1.5~4 dB。

Abstract

As an important source of unmanned aerial vehicle noise, reducing the aerodynamic noise of rotor is of great significance to improve public's acceptance of unmanned aerial vehicle. In view of this, a rotor design scheme with wavy-shaped blade tip structure was proposed. This scheme only used a specific wave line type as the wire for lofting design at the blade tip of the rotor. At the same time, the three characteristics of wavy-shaped leading edge, wavy-shaped trailing edge and wavy surface structure were coupled. This scheme can reduce the noise and retain the aerodynamic performance to the greatest extent. Then, the influence of wavy blade tip structure on rotor aerodynamic performance and aerodynamic noise were analyzed with computational fluid dynamics simulation and experimental research. The noise reduction mechanism was revealed, and the parameter optimization design of wavy tip was carried out. The simulation and experimental results showed that the rotor with wavy tip structure still has good aerodynamic performance. In terms of acoustic performance, the wavy blade tip structure reduced the broadband noise in the middle and high frequency ranges of the rotor. The rotor with waveform parameter N=8 has the best noise reduction effect, and the noise reduction was significant near the downwash flow of the rotor. The total sound pressure level was 1.5~4 dB lower than that of the Base rotor.

Key words

unmanned aerial vehicle rotor / noise reduction design / aerodynamic performance / aerodynamic noise / computational fluid dynamics simulation

引用本文

导出引用
张小正, 王雅洁, 李家柱, 毕传兴, 徐滢. 具有波浪形桨尖构造的无人机旋翼降噪研究[J]. 振动与冲击, 2024, 43(22): 135-145
ZHANG Xiaozheng, WANG Yajie, LI Jiazhu, BI Chuanxing, XU Ying. Noise reduction of the unmanned aerial vehicle rotor with wavy tip structure[J]. Journal of Vibration and Shock, 2024, 43(22): 135-145

参考文献

[1] Glegg S, Devenport W. Aeroacoustics of low Mach number flows: fundamentals, analysis, and measurement [J]. The Aeronautical Journal, 2017, 122(1258): 2030-2032. 
[2] Brooks T F, Pope D S, Marcolini M A. Airfoil self-noise and prediction [J]. NASA Reference Publication,1989, 1218. 
[3] 高建正,吴海军,蒋伟康.旋转叶片高频涡脱落噪声源的双阵列声成像试验研究[J].振动与冲击,2021,40(07):148-153.
    Gao Jianzheng, Wu Haijun, Jiang Weikang. Dual - array acoustic imaging tests of high frequency vortex shedding noise source for rotating blades [J]. Journal of Vibration and Shock, 2021, 40(07): 148-153.
[4] Lilley G M. A Study of the Silent Flight of the Owl [J]. Journal of Environmental Sciences, 1998,2340. 
[5] Geyer T F, Claus V T, Hall P M, et al. Silent owl flight: The effect of the leading edge comb [J]. International Journal of Aeroacoustics, 2017, 16(3): 115-134.
[6] Jaworski J W, Peake N. Aerodynamic noise from a poroelastic edge with implications for the silent flight of owls [J]. Journal of Fluid Mechanics, 2013, 723: 456-479.
[7] Paruchuri C C, Narayanan S, Joseph P, et al. Leading edge serration geometries for significantly enhanced leading edge noise reductions [C]// Proceedings of the 22nd AIAA/CEAS Aeroacoustics Conference. France: 2016. 2016-2736.
[8] Chen W, Qiao W, Wang X, et al. An Experimental and Numerical Investigation of Airfoil Instability Noise with Leading Edge Serrations [C]// Proceedings of the 22nd AIAA/CEAS Aeroacoustics Conference. France: 2016. 2016-2956.
[9] Narayanan S, Chaitanya P, Haeri S, et al. Airfoil noise reductions through leading edge serrations [J]. Physics of fluids, 2015, 27(2).
[10] 陈伟杰,乔渭阳,仝帆,等.前缘锯齿对边界层不稳定噪声的影响[J].航空学报,2016,37(12):3634-3645.
    Chen Weijie, Qiao Weiyang, Tong Fan,et al. Effect of leading edge sawtooth on unstable noise in boundary layer [J]. Chinese Journal of Aeronautics, 2016, 37(12):3634-3645.
[11] Howe M S. Noise produced by a sawtooth trailing edge [J]. Acoustical Society of America Journal, 1998, 90(1): 482-487.
[12] Lyu B, Azarpeyvand M, Sinayoko S. Prediction of noise from serrated trailing-edges [J]. Journal of Fluid Mechanics, 2016, 793(3): 556-588. 
[13] Avallone F, Van Der Velden W, Ragni D, et al. Noise reduction mechanisms of sawtooth and combed-sawtooth trailing-edge serrations [J]. Journal of Fluid Mechanics, 2018, 848: 560-591.
[14] Avallone F, Leon C A, Pröbsting S, et al. Tomographic-PIV investigation of the flow over serrated trailing-edges [C]// Proceedings of the 54th AIAA Aerospace Sciences Meeting. California: AIAA SciTech, 2016.1012-1025
[15] Arce León C, Merino-Martínez R, Ragni D, et al. Boundary layer characterization and acoustic measurements of flow-aligned trailing edge serrations [J]. Experiments in Fluids, 2016, 57(12): 182-203. 
[16] 程颢颐,乔渭阳,陈伟杰,等.基于仿生学结构的翼型降噪实验研究[J].工程热物理学报,2018,39(10):2159-2170.
    Cheng Haoyi, Qiao Weiyang, Chen Weijie, et al. Experimental research on airfoil noise reduction based on bionic structure [J]. Journal of Engineering Thermophysics, 2018, 39(10): 2159-2170.
[17] Gruber M, Azarpeyvand M, Joseph P F. Airfoil trailing edge noise reduction by the introduction of sawtooth and slitted trailing edge geometries [C]// ICA 2010-Incorporating Proceedings of the 2010 Annual Conference of the Australian Acoustical Society. Australia: 20th International Congress on Acoustics 2010, 2010. 1899-1907.
[18] Martínez R M, Carpio A R, Avallone F, et al. Broadband Trailing-Edge Noise Reduction Using Permeable Metal Foams [J]. INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 2017, 255(5), 2755-2765.
[19] Hu H T, Yang Y N, Liu Y, et al. Aerodynamic and aeroacoustic investigations of multi-copter rotors with leading edge serrations during forward flight [J]. Aerospace Science and Technology, 2021, 112.
[20] Ning Z, Wlezien R W, Hu H. An Experimental Study on Small UAV Propellers with Serrated Trailing Edges [C]// Proceedings of the 47th AIAA Fluid Dynamics Conference. Denver: AIAA AVIATION Forum, 2017. 3813-3829.
[21] Yang Y N, Wang Y, Liu Y, et al. Noise reduction and aerodynamics of isolated multi-copter rotors with serrated trailing edges during forward flight [J]. Journal of Sound and Vibration, 2020, 489.
[22] Oerlemans S, Fisher M, Maeder T, et al. Reduction of Wind Turbine Noise Using Optimized Airfoils and Trailing-Edge Serrations [J]. Aiaa Journal, 2009, 47(6): 1470-1481.
[23] Lee H M, Lu Z, Lim K M, et al. Quieter propeller with serrated trailing edge [J]. Applied Acoustics, 2019, 146: 227-236.
[24] Lin Y F, Lam K, Zou L, et al. Numerical study of flows past airfoils with wavy surfaces [J]. Journal of Fluids and Structures, 2013, 36(7): 136-148.
[25] Wang J, Zhang C, Wu Z, et al. Numerical study on reduction of aerodynamic noise around an airfoil with biomimetic structures [J]. Journal of Sound and Vibration, 2017, 394: 46-58.
[26] Bai H L, Zang B, New T H. The near wake of a sinusoidal wavy cylinder with a large spanwise wavelength using time-resolved particle image velocimetry [J]. Experiments in Fluids, 2019, 60(1): 15-32. 
[27] Yang Y N, Liu Y, Hu H T, et al. Experimental study on noise reduction of a wavy multi-copter rotor [J]. Applied Acoustics, 2020, 165.
[28] Yang Y, Liu Y, Li Y, et al. Aerodynamic and Aeroacoustic Performance of an Isolated Multicopter Rotor During Forward Flight [J]. AIAA Journal, 2020, 58(3): 1171-1181.
[29] Lopez O D, Escobar J A, Pérez A M. Computational Study of the Wake of a Quadcopter Propeller in Hover [C]// Proceedings of the 23rd AIAA Computational Fluid Dynamics Conference. Colorado: American Institute of Aeronautics and Astronautics, 2017.
[30] Mohammadi B, Boulkeraa T, Ghenaiet A, et al. A numerical optimization chain combining computational fluid dynamics and surrogate analysis for the aerodynamic design of airfoils [J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of aerospace engineering, 2014, 228(11): 1964-1981. 
[31] Sanei M, Razaghi R. Numerical investigation of three turbulence simulation models for S809 wind turbine airfoil [J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2018, 232(8): 1037-1048.
[32] Romani G, Edoardo Grande, Avallone F, et al. Computational study of flow incidence effects on the aeroacoustics of low blade-tip Mach number propellers [J]. Aerospace Science and Technology, 2021, 120.
[33] Mankbadi R R, Afari S, Golubev V V. Simulations of Broadband Noise of a Small UAV Propeller [C]// Proceedings of the AIAA Scitech 2020 Forum. Orlando: AIAA SciTech Forum, 2020. 1493-1542. 
[34] 张石宸,王春江,孙向东,等.细长圆柱构件表面扰流降噪机理的研究[J].振动与冲击,2022,41(10):170-176.
    Zhang Shichen, Wang Chunjiang, Sun Xiangdong, et al. Noise reduction mechanism of the surface vortex generator set on a slender cylinder [J]. Journal of Vibration and Shock, 2022, 41(10): 170-176.
[35] Nardari C, Casalino D, Polidoro F, et al. Numerical and Experimental Investigation of Flow Confinement Effects on UAV Rotor Noise [C]// Proceedings of the AIAA/CEAS Aeroacoustics Conference. Netherlands: American Institute of Aeronautics and Astronautics, 2019. 
[36] Cabell R, Grosveld F, Mcswain R. Measured noise from small unmanned aerial vehicles [C]// Proceedings of the Inter-Noise and Noise-Con Congress and Conference Proceedings. United States: Institute of Noise Control Engineering, 2016. 16-102.
[37] Zawodny N S, Boyd Jr D D, Burley C L. Acoustic characterization and prediction of representative, small-scale rotary-wing unmanned aircraft system components [C]// Proceedings of the American Helicopter Society (AHS) Annual Forum. United States: NASA Technical Reports Server, 2016. NF1676L-22587.

PDF(2387 KB)

Accesses

Citation

Detail

段落导航
相关文章

/