船用起重机四索吊装系统动力学分析与控制策略研究

黄哲 1, 2, 任昭鹏1, 2, 赵庭祺1, 2, 王生海1, 2, 陈海泉1, 2, 孙玉清1, 2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (22) : 162-173.

PDF(3220 KB)
PDF(3220 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (22) : 162-173.
论文

船用起重机四索吊装系统动力学分析与控制策略研究

  • 黄哲 1,2,任昭鹏1,2,赵庭祺1,2,王生海*1,2,陈海泉1,2,孙玉清1,2
作者信息 +

Dynamic modelling and control strategy for the four anti-swing cables system of an  offshore crane

  • HUANG Zhe1,2,REN Zhaopeng1,2,ZHAO Tingqi1,2,WANG Shenghai*1,2,CHEN Haiquan1,2,SUN Yuqing1,2
Author information +
文章历史 +

摘要

由于恶劣的海浪、洋流、海风等所产生的不同扰动且持续的影响,船用起重机难以实现精准快速吊装作业,因此,本文提出了船用起重机四索吊装系统(four anti-swing cable system ,FASCS),设计了张力控制方法(TCM)通过设置四根柔性减摇索的张力约束条件来抑制吊重摆动。同时,为了实现减摇索间的协同运动,设计了改进趋近律的自适应滑模控制器(adaptive synovial controller with improved reaching law ,ASC-IRL)控制减摇索绳长和绳速变化,防止发生过载甚至断裂。利用Matlab/Simulink对控制效果进行仿真分析。结果表明,有张力控制时吊重摆角抑制效果平均达80.1%,吊重摆动区域面积减少约61%。此外,减摇索绳长误差和绳速误差均在8s内趋近于0,ASC-IRL控制下减摇索最大误差相比于Fuzzy-PID减小75%以上,减摇索抖振现象相比于传统的SMC明显削弱,验证了ASC-IRL控制减摇索协同运动的强鲁棒性,研究结果对进一步探究四索吊装系统的吊重减摇机理和减摇索协同控制具有重要意义。

Abstract

Due to the continuous influence of waves, currents, and winds, achieving accurate and fast lifting is difficult because of the large payload swing during the lifting operation. Therefore, this study proposes a Four Anti-swing Cable System (FASCS) for Offshore cranes and designs a tension control method(TCM) to suppress the swing of the payload by setting the tension constraints of four flexible anti-swing cables. Concurrently, in order to achieve coordinated motion between anti-swing cables, an adaptive synovial controller with improved reaching law (ASC-IRL) is designed to control the changes of the length and speed of the anti-swing cables, which is used to prevent the occurrence of snap. The control effect is simulated and analyzed with Matlab/Simulink. The analysis shows that the swing angle suppression effect reaches 80.1% on average, and the projected area of the payload trajectory was reduced by 61%. In addition, both the length and speed of cables in errors can approach 0 within 8s. The maximum error of the anti-swing cables under ASC-IRL control is reduced by more than 75% compared with Fuzzy-PID, and the chattering phenomenon is reducing, which verifies the strong robustness of the cooperative motion of the anti-swing cables under ASC-IRL control. The research results are of great significance to further explore the anti-swing mechanism of the FASCS and the cooperative control of the anti-swing cables.

关键词

船用起重机 / 四索吊装系统(FASCS) / 减摇 / 协同运动 / 动力学分析

Key words

Offshore crane / Four Anti-swing Cable System (FASCS) / anti-swing / cooperative motion / dynamic analysis

引用本文

导出引用
黄哲 1, 2, 任昭鹏1, 2, 赵庭祺1, 2, 王生海1, 2, 陈海泉1, 2, 孙玉清1, 2. 船用起重机四索吊装系统动力学分析与控制策略研究[J]. 振动与冲击, 2024, 43(22): 162-173
HUANG Zhe1, 2, REN Zhaopeng1, 2, ZHAO Tingqi1, 2, WANG Shenghai1, 2, CHEN Haiquan1, 2, SUN Yuqing1, 2. Dynamic modelling and control strategy for the four anti-swing cables system of an  offshore crane[J]. Journal of Vibration and Shock, 2024, 43(22): 162-173

参考文献

[1] 林静正,方勇纯,卢彪等.基于迭代学习和神经网络的船用起重机控制[J].控制理论与应用,2022,39(04):602-612.
LIN Jingzheng, FANG Yongchun, LU Biao, et al. Controller Design of an Offshore Boom Crane Utilizing Iterative Learning and Neural Network [J]. Control Theory & Applications, 2022. 39 (04): 602-612.
[2] Bahram Kimiaghalam. Feedforward Control Law For A Shipboard Crane With Maryland Rigging System[J]. Journal of Vibration and Control,2002,8(2).
[3] WEN B , HOMAIFAR A , BIKDASH M , et al . Modeling and Optimal Control Design of Shipboard Crane [C]/ Proceedings of the 1999 American Control Conference .San Diego , California , IEEE . 1999.
[4] 王阳.船用起重机防摇装置设计研究[J].舰船科学技术,2013,35(07):105-108.
    WANG Yang. Research and design of an anti-swing mechanism for a shipborne crane[J]. Ship Science and Technology, 2013, 35(07): 105-108.
[5] 吴俊杰,吉阳,陈海泉等.船用起重机吊盘式机械防摇系统的设计与试验[J].船舶工程,2018,40(05):41-45+67. 
WU Junjie, JI Yang, CHEN Haiquan, et al. Design and Experiment of Disc-type Mechanical Anti-swing System of Ship Crane[J]. Ship Engineering, 2018, 40 (05): 41-45+67.
[6] 王建立,王生海,孙玉清等.船用起重机伸缩套管防摆装置动力学分析与试验[J].振动与冲击,2022,41(11):141-148. 
WANG Jianli, WANG Shenghai, SUN Yuqing, et al. Dynamic Analysis and Tests of Anti-swing Device for Telescopic Sleeve of Ship-mounted Crane[J]. Journal of Vibration and Shock, 2022, 41 (11): 141-148.
[7] HU Y, TAO L, V Wanti-pendulation analysis of parallel wave compensation systems) Proceedings of the Institution of Mechanical Engineers, Part M Journal of Engineering for the MaritimeEnvironment,2014,230(1):177-86.
[8] 韩广冬,张桐,陈海泉等.船用起重机减摇装置设计[J].船海工程,2017,46(06):38-41+44. 
HAN Guangdong, ZHANG Tong, CHEN Haiquan, et al. Anti-swing Device Design of Ship-mounted Crane[J]. Ship & Ocean Engineering, 2017, 46 (06): 38-41+44.
[9] 任昭鹏,奚瑞,王生海等.船用起重机三索限位式防摇摆装置设计[J].山东大学学报(工学版),2020,50(03):125-132+142. REN Zhaopeng, XI Rui, WANG Shenghai, et al. Design of triple-cables limiting-location anti-swing device for shipboard crane[J]. Journal of Shandong University(Engineering Science), 2020, 50(03): 125-132+142.
[10] B. Lu, J. Lin, Y. Fang, Y. Hao, and H. Cao, Online trajectory planning for three-dimensional offshore boom cranes, Automation in Construction, 140 (2022).
[11] X. Miao, B. Zhao, L. Wang, and H. Ouyang, Trolley regulation and swing reduction of underactuated double-pendulum overhead cranes using fuzzy adaptive nonlinear control, Nonlinear Dynamics ,109 (2022), no. 2, 837-847.
[12] 卢彪,吴壮,方勇纯等.带有完整约束的双吊车系统输入整形控制[J].控制理论与应用,2018,35(12):1805-1811.
    LU Biao, WU Zhuang, FANG Yongchun, et al. Input shaping control for underactuated dual overhead crane system with holonomic constraints[J]. Control Theory & Applications, 2018, 35(12): 1805-1811.
[13] Ku, N.K.; Cha, J.H.; Roh, M.I.; Lee, K.Y. A tagline proportional-derivative control method for the anti-swing motion of a heavy load suspended by a floating crane in waves. Proceedings of the Institution of Mechanical Engineers, Part M. Journal of Engineering for the Maritime Environment ,2013, 227, 357–366.
[14] 孙宁,张建一,吴易鸣等.一种双摆效应桥式起重机光滑鲁棒控制方法[J].振动与冲击, 2019, 38(22): 1-6.
    SUN Ning, ZHANG Jianyi, WU Yiming, et al. Continuous robust control for double-pendulum overhead cranes[J]. Journal of Vibration and Shock, 2019, 38(22): 1-6.
[15] Yuzhu Chen, Yuzhe Qian, Die Hu, Nonlinear vibration suppression control of underactuated shipboard rotary cranes with spherical pendulum and persistent ship roll disturbances, Ocean Engineering, Volume 241, 2021, 110013, ISSN 0029-8018.
[16] 刘鹏,曹现刚,张旭辉等.4-1型柔索驱动并联机器人稳定性度量及其灵敏度分析[J].振动与冲击,2023,42(14):180-188.
LIU Peng, CAO Xiangang, ZHANG Xuhui, et al. Stability and Sensitivity of A 4-1 Type Cable-driven Parallel Robot [J]. Journal of Vibration and Shock, 2023,42 (14): 180-188.
[17] Wang X G, Peng M J, Hu Z H, et al. Feasibility investigation of large-scale model suspended by cable-driven parallel robot in hypersonic wind tunnel test[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(13): 2375-2383.
[18] Zhang F, Shang W, Zhang B, et al. Design optimization of redundantly actuated cable-driven parallel robots for automated warehouse system[J]. IEEE Access, 2020, 8: 56867-56879.
[19] Zou Y, Zhang L, Li L, et al. Running experimental research of a wire driven astronaut rehabilitative training robot [J]. IEEE Access, 2018: 1-1.
[20] Chen C T, Lien W Y, Chen C T, et al. Dynamic modeling and motion control of a cable-driven robotic exoskeleton with pneumatic artificial muscle actuators[J]. IEEE Access, 2020, 8: 149796-149807.
[21] 游虹,尚伟伟,张彬等.基于高速视觉的绳索牵引并联机器人轨迹跟踪控制[J].机械工程学报,2019,55(05):19-26.
    YOU Hong, SHANG Weiwei, ZHANG Bin, et al. Trajectory Tracking Control of Cable-driven Parallel Robots by Using High-speed Vision[J]. Journal of Mechanical Engineering, 2019, 55(05): 19-26.
[22] Shang W W, Zhang B, Zhang F, et al. Synchronization control in the cable space for cable-driven parallel robots[J]. IEEE Trans. IEEE/ASME Transactions on Mechatronics, 2019,66(6):4544-4554.
[23] Shang W W, Xie F, Zhang B, et al. Adaptive cross-coupled control of cable-driven parallel robots with model uncertainties[J]. IEEE Robotics and Automation Letters, 2020, 5(3).
[24] DNV. Environmental cnditions and environmental loads: DNV-RP-C205[S]. Oslo: DNV, 2007

PDF(3220 KB)

200

Accesses

0

Citation

Detail

段落导航
相关文章

/