铣刀多重刀齿分布及其动态切削行为特性

王斌1, 姜彬1, 范丽丽1, 赵培轶1, 成远清2, 毕刚2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (22) : 181-190.

PDF(3083 KB)
PDF(3083 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (22) : 181-190.
论文

铣刀多重刀齿分布及其动态切削行为特性

  • 王斌1,姜彬*1,范丽丽1,赵培轶1,成远清2,毕刚2
作者信息 +

Multiple teeth distributions of a milling cutter and dynamic cutting behaviour characteristics

  • WANG Bin1,JIANG Bin*1,FAN Lili1,ZHAO Peiyi1,CHENG Yuanqing2,BI Gang2
Author information +
文章历史 +

摘要

受刀齿误差影响,铣刀沿轴向存在多种刀齿分布,振动作用下具有多重刀齿分布的铣刀,其切削行为呈现多时变特性,导致切削过程中切削层厚度变化和铣削表面形貌分布具有复杂性和不确定性。依据铣刀结构和刀齿误差,获取沿铣刀轴向的多重刀齿分布序列,构建振动作用下多重刀齿分布的瞬时切削层厚度和铣削表面形貌分布解算模型,揭示沿铣刀轴向的单齿、多齿不等齿距和多齿等齿距分布的动态切削行为特征,阐明刀齿误差和铣削振动对铣刀瞬时切削层厚度及铣削表面形貌分布多样性的影响机制,并进行实验验证。结果表明,采用上述模型与方法,可揭示出振动作用下多重刀齿分布铣刀的动态切削行为及铣削表面的形成过程。

Abstract

Due to influence of tooth errors, multiple tooth distributions along axial direction of milling cutter exist. Milling cutter with multiple tooth distributions under vibration exhibit multi temporal characteristics in cutting behavior, resulting in complex and uncertain changes in cutting layer thickness and morphology distribution during cutting. Based on structure and tooth error, a sequence of multiple tooth distributions along axial direction of cutter is obtained, and a calculation model for cutting layer thickness and morphology distribution of multiple tooth distributions under vibration is constructed. Cutting behaviors of single tooth, multi tooth unequal pitch, and multi tooth equal pitch distributions along cutter axis are revealed. Influence mechanism of error and vibration on instantaneous cutting layer thickness and morphology distribution diversity is elucidated and experimentally verified. The results indicate that the above method can reveal dynamic cutting behavior of multi tooth distribution cutters under vibration and formation of milling surfaces.

关键词

铣刀 / 刀齿误差 / 铣削振动 / 多重刀齿分布 / 动态切削行为 /

Key words

milling cutter / tooth error / milling vibration / multiple tooth distribution / dynamic cutting behavior

引用本文

导出引用
王斌1, 姜彬1, 范丽丽1, 赵培轶1, 成远清2, 毕刚2. 铣刀多重刀齿分布及其动态切削行为特性[J]. 振动与冲击, 2024, 43(22): 181-190
WANG Bin1, JIANG Bin1, FAN Lili1, ZHAO Peiyi1, CHENG Yuanqing2, BI Gang2. Multiple teeth distributions of a milling cutter and dynamic cutting behaviour characteristics[J]. Journal of Vibration and Shock, 2024, 43(22): 181-190

参考文献

[1]  Mou W, Zhu S, Zhu M, et al. A prediction model of cutting force about ball end milling for sculptured Surface[J]. Mathematical Problems in Engineering, 2020, 2020(a): 1-15.
[2]  Pan J F, Ni J, He L H, et al. Influence of micro-structured milling cutter on the milling load and surface roughness of 6061 aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(11-12): 1-8.
[3]  Nishida I, Okumura R, Sato R, et al. Cutting force simulation in minute time resolution for ball end milling under various tool posture[J]. Journal of Manufacturing Science and Engineering-Transactions of The ASME ,2018, 140(2): 021009
[4]  Arizmendi M, Fernández J, Gil A, et al. Effect of tool setting error on the topography of surfaces machined by peripheral milling[J]. International Journal of Machine Tools & Manufacture, 2009, 49(1): 36-52.
[5]  Peng Z, Jiao L, Yan P, et al. Simulation and experimental study on 3D surface topography in micro-ball-end milling[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96: 1943-1958.
[6]  Sun T, Qin L F, Fu Y C, et al. Mathematical modeling of cutting layer geometry and cutting force in orthogonal turn-milling[J]. Journal of Materials Processing Technology, 2021, 290(1): 1-13.
[7]  李阳,程祥,周怀彪,等. 微细切削中侧刃的切削影响研究[J].机械设计与制造,2022, 2022(5): 1-4.
Li Y, Cheng X, Zhou H B, et al. Research on the cutting influence of side edges in micro cutting[J]. Mechanical Design and Manufacturing, 2022, 2022(5): 1-4.
[8]  Jiang B, Yao G S, Zhang S, et al. Multi tooth uneven cutting behavior of high-speed milling cutter and criterion for milled surface topography[J]. The Open Mechanical Engineering Journal, 2015, 9(1): 395-401.
[9]  Zhang X, Zhang J, Pang B, et al. An accurate prediction method of cutting forces in 5-axis flank milling of sculptured surface[J]. International Journal of Machine Tools & Manufacture: Design, research and application, 2016, 104: 26-36.
[10]  Li K X, Zhu K P, Mei T. A generic instantaneous undeformed chip thickness model for the cutting force modeling in micromilling[J]. International Journal of Machine Tools & Manufacture: Design, research and application, 2016, 105: 23-31.
[11]  Zhang Y, Li S, Zhu K. Generic instantaneous force modeling and comprehensive real engagement identification in micro-milling[J]. International Journal of Mechanical Sciences, 2020, 176(15): 105504
[12]  Luo Z W, Zhao W X, Jiao L, et al. Cutting force modeling in end milling of curved geometries based on oblique cutting process[J]. Journal of Mechanical Engineering, 2016, 52(9): 184-192.
[13]  周晓勤, 谢雪范, 马伟,等. 自由曲面铣削表面形貌仿真方法研究[J]. 组合机床与自动化加工技术, 2019, (01): 19-22.
Zhou X Q, Xie X F, Ma W, et al. Research on simulation method for surface morphology of freeform surface milling[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2019, (01): 19-22.
[14]  Zhou R H, Chen Q L. An analytical prediction model of surface topography generated in 4-Axis milling Process[J]. International Journal of Advanced Manufacturing Technology, 2021, 115(9-10): 3289-3299.
[15]  程德俊, 全宏杰, 张春燕. 球头铣刀切削加工表面形貌仿真技术研究[J]. 江苏科技大学学报(自然科学版), 2021, 35(04): 38-43.
Cheng D J, Quan J H, Zhang C Y. Research on surface morphology simulation technology for ball end milling cutter cutting[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2021, 35(04): 38-43.
[16]  Jin S, Liu S, Zhang X P, et al. A unified prediction model of 3D surface topography in face milling considering multi-error sources[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(1-4): 705-717.
[17]  Chen W, Sun Y, Huo D, et al. Modelling of the influence of tool runout on surface generation in micro milling[J]. Chinese Journal of Mechanical Engineering, 2019, 32(01): 152-160.
[18]  李凤琴, 赵波, 郝旺身,等. 超声纵扭铣削钛合金表面形貌特性及有效性分析[J]. 中国机械工程, 2023, 34(06): 677-684+693.
Li F Q, Zhao B, Hao W S, et al. Surface morphology characteristics and effectiveness analysis of ultrasonic longitudinal and torsional milling of titanium alloy[J]. China Mechanical Engineering, 2023, 34(06): 677-684+693.
[19]  Zhuo Y , Han Z , An D , et al. Surface topography prediction in peripheral milling of thin-walled parts considering cutting vibration and material removal effect[J]. International Journal of Mechanical Sciences, 2021, 211: 106797.
[20] 武民, 马利杰, 王占奎, 等. 不同振动方式下的钛合金超声振动铣削表面完整性研究[J]. 振动与冲击, 2021, 40(04): 164-170.
Wu M, Ma L J, Wang Z K, et al. Influence of vibration modes on surface integrity during ultrasonic vibration milling of titanium alloy[J]. Journal of Vibration and Shock, 2021, 40(04): 164-170. 

PDF(3083 KB)

Accesses

Citation

Detail

段落导航
相关文章

/