板式橡胶支座广泛应用于我国量大面广的中小跨径公路梁桥中,由于其放置形式而受到钢及混凝土界面的约束作用,加之其构造特点进而易于在不同摩擦界面发生非常规的滑动行为。为此,基于钢板+混凝土板、钢板及混凝土板三类摩擦界面,设定不同的竖向压应力及加载速率两类滑动条件,通过支座拟静力加载以对比分析其变形状态及滞回行为,系统探讨不同摩擦界面的支座滑动、刚度、摩擦、耗能及恢复力特性。结果表明:板式橡胶支座变形现象为剪切变形、翘曲卷边和滑动,滞回环由狭长梭形逐渐变为双线性;不同摩擦界面及不同滑动条件在相同加载ESS条件下的变形阶段及变形状态相异;橡胶的黏结效应使之与摩擦界面间产生附着摩擦作用,导致支座在滑动过程中出现力学性能的变化,恢复力模型可取为三折线;由于附着摩擦作用的差异,钢板+混凝土板及钢板的界面摩擦系数与滑动速率呈正相关,与压应力呈负相关,而混凝土板的界面摩擦特性不稳定,对应摩擦系数与两类滑动条件皆呈负相关趋势;总体而言,钢板+混凝土板的界面摩擦系数较小,相应支座滑动力较小,剪切刚度较小,呈现为滑动位移较大,耗能充分,其次分别为钢板和混凝土板。
Abstract
Laminated-rubber bearings are widely used in small-to-medium-span highway bridges with large quantities and wide areas in China. Due to the placement form, they are constrained by the steel and concrete interfaces, and they are prone to unconventionally sliding at different friction interfaces by their structural characteristics. Therefore, based on three types of friction interfaces: steel plate & concrete slab, steel plate and concrete slab, the variation about two types of sliding conditions for vertical compressive stress and loading rate are set. The deformation state and hysteresis behavior are compared and analyzed through quasi-static loading, and the sliding, stiffness, friction, energy consumption, and restoring force characteristics of the bearing at different friction interfaces are systematically explored. The results show that the deformation phenomena of laminated-rubber bearing is shear deformation, warping, curling, and sliding, and the hysteresis loop gradually changes from a narrow shuttle shape to a bilinear shape. The deformation stages and states of the bearing for different friction interfaces and sliding conditions under the same loading ESS conditions are different. The adhesion friction between rubber and friction interface is due to the adhesive effect of rubber, resulting in changes in the mechanical properties of the bearing during sliding, and the restoring force model can be taken as a trilinear. Due to the difference in adhesive friction, the interface friction coefficient of steel plate & concrete slab and steel plate is positively correlated with sliding rate and negatively correlated with compressive stress. However, the interface friction characteristics of concrete slab are unstable, and the corresponding friction coefficient shows a negative correlation trend with both types of sliding conditions. Overall, the interface friction coefficient of the bearing between steel plate & concrete slab is relatively small, resulting in smaller sliding force and shear stiffness, and the sliding displacement is large and energy consumption is sufficient, followed by steel plate and concrete slab, respectively.
关键词
摩擦界面 /
板式橡胶支座 /
摩擦滑动 /
力学特性 /
附着摩擦
{{custom_keyword}} /
Key words
friction interface /
laminated-rubber bearing /
friction sliding /
mechanical properties /
adhesion friction
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王克海, 韦韩, 李茜, 等. 中小跨径公路桥梁抗震设计理念[J]. 土木工程学报, 2012, 45(9): 115-121.
WANG Kehai, WEI Han, LI Qian, et al. Philosophies on seismic design of highway bridges of small or medium spans [J]. China Civil Engineering Journal, 2012, 45(9): 115-121.
[2] 徐略勤, 傅沛瑶, 李建中, 等. 板式橡胶支座梁桥的典型横向震害及其影响因素分析[J]. 振动与冲击, 2020, 39(2): 209-217.
XU Lueqin, FU Peiyao, LI Jianzhong, et al. Typical transverse damage of girder bridges supported by laminated rubber bearings and its influential factors [J]. Journal of Vibration and Shock, 2020, 39(2): 209-217.
[3] LI J Z, PENG T B, XU Y. Damage investigation of girder bridges under the Wenchuan earthquake and corresponding seismic design recommendations [J]. Earthquake Engineering and Engineering Vibration, 2008, 7(4): 337-344.
[4] 王克海, 吴刚, 张盼盼. 板式橡胶支座摩擦滑移性能试验研究[J]. 振动与冲击, 2020, 39(19): 1-6.
WANG Kehai, WU Gang, ZHANG Panpan. Tests for friction sliding performance of plate rubber bearing [J]. Journal of Vibration and Shock, 2020, 39(19): 1-6.
[5] 孙颖, 郑诚斌, 卓卫东, 等. 板式橡胶支座力学模型参数的时变特性研究[J]. 振动与冲击, 2021, 40(2): 91-96.
SUN Ying, ZHENG Chengbin, ZHUO Weidong, et al. Time-varying properties of the mechanical model parameters of plate rubber bearings [J]. Journal of Vibration and Shock, 2021, 40(2): 91-96.
[6] 刘笑显, 李建中, 陈旭. X形弹塑性钢挡块对简支梁桥横向地震反应影响[J].振动与冲击, 2015, 34(2): 143-149.
LIU Xiaoxian, LI Jianzhong, CHEN Xu. Effects of X-shaped elastic-plastic steel shear keys on transverse seismic responses of a simply-supported girder bridge [J]. Journal of Vibration and Shock, 2015, 34(2): 143-149.
[7] 范立础, 聂利英, 李建中. 地震作用下板式橡胶支座滑动的动力性能分析[J].中国公路学报, 2003, 16(4): 30-35.
FAN Lichu, NIE Liying, LI Jianzhong. Dynamic characteristic analysis of laminated rubber bearing sliding under earthquake[J]. China Journal of Highway and Transport, 2003, 16(4): 30-35.
[8] 吴刚, 王克海, 宋帅, 等. 不同约束体系曲线梁桥震害调查及损伤模式分析[J]. 振动与冲击, 2020, 39(12): 113-120+141.
WU Gang, WANG Kehai, SONG Shuai, et al. Investigation of seismic damage and analysis of damage mode of curved bridges with different restraint systems [J]. Journal of Vibration and Shock, 2020, 39(12): 113-120+141.
[9] 庄卫林. 汶川地震公路震害分析:桥梁与隧道[M]. 北京: 人民交通出版社, 2013.
[10] HAN Q, DU X L, L J B, et al. Seismic damage of highway bridges during the 2008 Wenchuan earthquake[J]. Earthquake Engineering and Engineering Vibration, 2009, 8(2): 263-273.
[11] 吴刚, 王全录, 王克海, 等. 考虑支座及挡块力学性能退化的桥梁横向地震响应分析[J]. 振动与冲击, 2018, 37(2): 189-196.
WU Gang, WANG Quanlu, WANG Kehai, et al. Transverse seismic response analysis for bridges considering performance degradation of bearings and stoppers [J]. Journal of Vibration and Shock, 2018, 37(2): 189-196.
[12] 公路桥梁抗震设计规范: JTG/T 2231-01-2020 [S]. 北京: 人民交通出版社, 2020.
[13] 王凯睿,徐秀丽,李雪红等.考虑板式支座滑动效应的桥梁振动台试验研究[J].振动与冲击,2017,36(12):68-74.
WANG Kairui, XU Xiuli, LI Xuehong, et al. A study of the concrete continuous girder bridge shaking table test considering the sliding of laminated rubber bearings [J]. Journal of Vibration and Shock, 2017, 36(12):68-74.
[14] XIANG N L, LI J Z. Experimental and numerical study on seismic sliding mechanism of laminated-rubber bearings[J]. Engineering Structures, 2017, 141: 159-174.
[15] 李冲, 王克海, 李悦, 等. 板式橡胶支座摩擦滑移抗震性能试验研究[J]. 东南大学学报(自然科学版), 2014,44(1): 162-167.
LI Chong, WANG Kehai, LI Yue, et al. Experimental study on seismic performance of laminated rubber bearings with friction slipping[J]. Journal of Southeast University (Natural Science), 2014, 44(1): 162-167.
[16] LI Yue, WU Q Q. Experimental study on friction sliding performance of rubber bearings in bridges[J]. Advances in Materials Science and Engineering, 2017, 5845149: 1-8.
[17] STEELMAN J S, FAHNESTOCK L A, HAJJAR J F, et al. Cyclic experimental behavior of nonseismic elastomeric bearings with stiffened angle side retainer fuses for quasi-isolated seismic bridge response[J]. Journal of Bridge Engineering, 2018, 23(1): 04017120.
[18] STEELMAN J S, FAHNESTOCK L A, FILIPOV E T, et al. Shear and friction response of nonseismic laminated elastomeric bridge bearings subject to seismic demands[J]. Journal of Bridge Engineering, 2013, 18(7): 612-623.
[19] 李枝军, 葛飞, 徐秀丽, 等. 板式橡胶支座性能有限元模拟与试验研究[J]. 东南大学学报(自然科学版), 2013, 43(6):1299-1304.
LI Zhijun, GE Fei, XU Xiuli, et al. Finite element simulation and experimental study of property for elastomeric pad bearing[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(6): 1299-1304.
[20] 彭坤, 徐秀丽, 李雪红, 等. 板式橡胶支座滑动性能试验研究[J]. 中外公路, 2020,40(2): 73-77.
PENG Kun, XU Xiuli, LI Xuehong, et al. Experimental study on sliding performance of plate rubber bearings[J]. Journal of China & Foreign Highway, 2020, 40(2): 73-77.
[21] 李悦, 李冲, 李茜, 等. 桥梁板式橡胶支座剪切破坏及摩擦滑移性能试验研究[J]. 铁道学报, 2020,42(8): 130-137.
LI Yue, LI Chong, LI Qian, et al. Experiment of shear failure and friction sliding performance of elastomeric bearings of bridges[J]. Journal of the China Railway Society, 2020, 42(8): 130-137.
[22] 王元伟. 强震下板式橡胶支座的滑移损伤及其对桥梁抗震性能的影响分析[D]. 北京: 北京交通大学, 2021.
[23] KONSTANTINIDIS D, KELLY J M, MAKRIS N. Experimental investigations on the seismic response of bridge bearings[J]. Civil Engineering Studies Illinois Center for Transportation, 2008.
[24] 公路桥梁板式橡胶支座: JT/T 4—2019 [S]. 北京: 人民交通出版社, 2019.
[25] 橡胶支座 第1部分:隔震橡胶支座试验方法: GB/T 20688.1—2007[S]. 北京: 中国标准出版社, 2007.
[26] 橡胶支座 第2部分:桥梁隔震橡胶支座: GB 20688.2—2006[S]. 北京: 中国标准出版社, 2006.
[27] 橡胶支座 第4部分:普通橡胶支座: GB 20688.4—2007[S]. 北京: 中国标准出版社, 2007.
[28] LIU K Y, CHANG K C, LU C H, et al. Seismic performance of skew bridge with friction type rubber bearings[C]. 14th World Conference on Earthquake Engineering, 2008.
[29] RUSSO G, PAULETTA M. Sliding instability of fiber-reforced elastomeric isolators in unbonded applications[J]. Engineering Structures, 2013, 48: 70-80.
[30] FUKAHORI Y, GABRIEL P, LIANG H, et al. A new generalized philosophy and theory for rubber friction and wear [J]. Wear, 2020, 446-447: 203166.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}