工业机器人工况下的增量式光栅编码器误差补偿法

王海鹏, 郭瑜, 尹兴超

振动与冲击 ›› 2024, Vol. 43 ›› Issue (22) : 225-231.

PDF(2002 KB)
PDF(2002 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (22) : 225-231.
论文

工业机器人工况下的增量式光栅编码器误差补偿法

  • 王海鹏,郭瑜*,尹兴超
作者信息 +

Error compensation method for the incremental grating encoder of industrial robots

  • WANG Haipeng,GUO Yu*,YIN Xingchao
Author information +
文章历史 +

摘要

目前对增量式光栅编码器的误差补偿方法多适用于平稳工况,而工业机器人工作中多为变转速、正反转工况,现有的基于Savitzky-Golay(SG)滤波器的瞬时角速度(instantaneous angular speed, IAS)信号误差补偿法因未考虑转速与转向的变化而失效。对此,本文提出一种针对工业机器人工况的 IAS信号误差抑制自适应SG(Adaptive SG, ASG)滤波法,以实现对刻线误差与细分误差的补偿;首先通过仿真分析,在不同转速工况下建立变异系数与滤波器长度的关系,随后在工业机器人RV试验台上对编码器的IAS信号进行了采集,并对刻线误差与细分误差进行补偿,实验结果表明使用ASG滤波器可以有效实现工业机器人工况下的增量式光学编码器的误差补偿。

Abstract

At present, the error compensation methods for incremental grating encoders are mostly suitable for stable working conditions, while the working conditions of industrial robots are mostly variable speed and positive and negative rotating conditions. The instantaneous angular speed (IAS) signal error compensation method based on the Savitzky-Golay (SG) filter is invalid because the instantaneous angular speed and steering are not taken into account. In this paper, an Adaptive SG (ASG) filtering method for IAS signal error suppression is proposed to compensate the line error and subdivision error. Firstly, the relationship between the coefficient of variation and the filter length is established under different rotational speed conditions through simulation analysis. Then, the IAS signal of encoder is collected on the RV test bench of industrial robot, and the scribing error and subdivision error are compensated. The experimental results show that the error compensation of the incremental optical encoder can be realized effectively by using the ASG filter under the working condition of industrial robots.

关键词

工业机器人 / 自适应 / 变异系数 / 误差补偿 / Savitzky-Golay滤波器

Key words

Industrial robot / Self-adaptation / Coefficient of variation / Error compensation / Savitzky-Golay  / filter

引用本文

导出引用
王海鹏, 郭瑜, 尹兴超. 工业机器人工况下的增量式光栅编码器误差补偿法[J]. 振动与冲击, 2024, 43(22): 225-231
WANG Haipeng, GUO Yu, YIN Xingchao. Error compensation method for the incremental grating encoder of industrial robots[J]. Journal of Vibration and Shock, 2024, 43(22): 225-231

参考文献

[1] Zeng Q, Feng G, Shao Y, et al. An accurate instantaneous angular speed estimation method based on a dual detector setup[J]. Mechanical Systems and Signal Processing, 2020, 140:106674.
[2] 李晓天. 机械刻划光栅刻线误差及其修正方法研究[D]. 中国科学院大学, 2013.
LI Xiaotian. Machine-ruling grating’s line error and its correction method [D]. Changchun: University of Chinese Academy of Sciences, 2013.
[3] 李尕丽, 薛梓, 黄垚, 等. 圆光栅测角系统示值误差分析与补偿[J]. 仪器仪表学报, 2021, 42(5): 59-65.
LI Gali, XUE Zi, HUANG Yao, et al. Indication error analysis and compensation of circular grating angle measurement system[J]. Chinese Journal of Scientific Instrument, 2021, 42(5): 59-65.
[4] 高贯斌, 王文, 林铿, 等. 圆光栅角度传感器的误差补偿及参数辨识[J]. 光学 精密工程, 2010(7): 1766-1772.
GAO Guanbin, WANG Wen, LIN Keng, CHEN Zichen. Error compensation and parameter identification of circular grating angle sensors[J]. Optics and Precision Engineering, 2010(7): 1766-1772.
[5] 朱帆, 吴易明, 刘长春. 四读头法消除码盘偏心和振动对叠栅条纹相位测量的影响[J]. 光学学报, 2011, 31(4): 0412008. 
Zhu Fan, Wu Yiming, Liu Changchun. Eliminating Influence of Grating Encoder’s Eccentricity and Vibration to Moire Fringes Signal by Four Reading Heads[J]. Acta Optica Sinica, 2011, 31(4): 0412008.
[6] 艾晨光, 褚明, 孙汉旭, 等. 基准圆光栅偏心检测及测角误差补偿[J]. 光学 精密工程, 2012(6): 2479-2484.
AI Chenguang, CHU Ming, SUN Hanxu, ZHANG Yanheng, YE Ping. Eccentric testing of benchmark circular grating and compensation of angular error[J]. Optics and Precision Engineering, 2012(6): 2479-2484.
[7] 尹兴超, 郭瑜, 樊家伟, 等. 增量式光学编码器IAS信号误差建模及补偿[J]. 仪器仪表学报, 2023(9): 50-58.
Yin Xingchao, Guo Yu, Fan Jiawei, et al. Error modeling and compensation of IAS signal for incremental optical encoders. Journal of Instrumentation, 2023(9): 50-58.
[8] 王祥玉. 基于Savitzky-Golay去噪算法与主成分分析的缺失数据填补算法研究[D]. 暨南大学, 2018.
Wang Xiangyu. Research on Missing Data Imputation Algorithm Based on Savitzky-Golay Denoising Algorithm and Principal Component Analysis [D]. Jinan University, 2018.
[9] 位秀雷, 林瑞霖, 刘树勇, 等. 小波-SG-EEMD混合算法及混沌去噪应用研究[J]. 振动与冲击, 2015, 34(17): 100-104+110.
WEI Xiulei, LIN Ruilin, LIU Shuyong, et al. Research on Hybrid Wavelet-SG-EEMD Algorithm and Chaotic Denoising [J]. Journal of Vibration and Shock, 2015, 34(17): 100-104+110.
[10] Abdi H. Coefficient of Variation [J]. Encyclopedia of Statistical Sciences, 2010(1): 169-171.
[11] 田国英, 张大伟, 易兴利, 等. 基于gPC理论的不确定参数电动汽车脉冲响应研究[J]. 振动与冲击, 2021, 40(16): 81-90+150.
TIAN Guoying, ZHANG Dawei, YI Xingli, et al. Research on impulse response of electric vehicles with uncertain parameters based on gPC Theory [J]. Journal of Vibration and Shock, 2021, 40(16): 81-90+150.
[12] ZHAO M, JIA X D, LIN J, et al. Instantaneous speed jitter detection via encoder signal and its application for the diagnosis of planetary gearbox [J]. Mechanical System and Signal Processing, 2018, 98(1): 16-31.

PDF(2002 KB)

122

Accesses

0

Citation

Detail

段落导航
相关文章

/