橡胶支座-地铁车站减震结构的动力响应及关键设计参数研究

杜贺港1, 张梓鸿2, 许成顺1, 杜修力1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (22) : 243-252.

PDF(2647 KB)
PDF(2647 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (22) : 243-252.
论文

橡胶支座-地铁车站减震结构的动力响应及关键设计参数研究

  • 杜贺港1,张梓鸿2,许成顺*1,杜修力1
作者信息 +

Dynamic responses of rubber bearing subway station seimic absorption structures and the key design parameters

  • DU Hegang1, ZHANG Zihong2, XU Chengshun*1, DU Xiuli1
Author information +
文章历史 +

摘要

基于地下结构布设隔震支座可有效控制结构地震反应,本文以某实际两层两跨地铁车站为研究对象,建立了橡胶支座布设于地铁车站结构的三维全时程动力分析模型,探讨了橡胶支座关键设计参数-水平刚度比对多层地铁车站减震结构地震响应的影响,并进一步分析了在最佳水平刚度比条件下减震结构的动力响应。研究结果表明:(1)中柱布设橡胶支座后,中柱内力及位移均有不同程度的减小,表现出良好的减震效果。(2)水平刚度比的变化对减震结构中柱的动力响应结果影响显著,对结构侧墙的动力响应结果影响较小;且水平刚度比会对中板的变形模式产生影响。综合考量,建议最佳水平刚度比的范围为0.06~0.08。(3)在最优水平刚度比条件下,结构中柱位移减震率最高可达85%,且中柱及侧墙始终处于安全工作状态,达到了破坏模式可控的效果。

Abstract

Placing isolation bearings based on underground structures can effectively control structural seismic response.This paper takes an actual two-story, two-span subway station as the research object, and a three-dimensional full time dynamic analysis model was established for the placement of rubber bearings in subway station structures.The influence of the key design parameter of rubber bearings -horizontal stiffness ratio-on the seismic response of multi story subway station seismic absorption structures was explored, and the dynamic response of the seismic absorption structure under the optimal horizontal stiffness ratio was further analyzed.The research results show that: (1) after installing rubber bearings on the central column, the internal force and displacement of the central column are reduced to varying degrees, exhibiting good shock absorption effects. (2) the change in horizontal stiffness ratio has a significant impact on the dynamic response results of the columns in the seismic absorption structure, but has a small impact on the dynamic response results of the side walls of the structure; and the horizontal stiffness ratio will have an impact on the deformation mode of the middle plate. After comprehensive consideration, it is recommended that the optimal range of horizontal stiffness ratio is 0.06-0.08. (3) under the optimal horizontal stiffness ratio, the maximum displacement damping rate of the central column in the structure can reach 85%, and the central column and side walls are always in a safe working state, achieving the effect of controllable failure modes.

关键词

土-结相互作用 / 地铁车站 / 橡胶支座 / 水平刚度比 / 减震效果

Key words

soil-structure interaction / subway stations / rubber support / horizontal stiffness ratio;seismic mitigation effect

引用本文

导出引用
杜贺港1, 张梓鸿2, 许成顺1, 杜修力1. 橡胶支座-地铁车站减震结构的动力响应及关键设计参数研究[J]. 振动与冲击, 2024, 43(22): 243-252
DU Hegang1, ZHANG Zihong2, XU Chengshun1, DU Xiuli1. Dynamic responses of rubber bearing subway station seimic absorption structures and the key design parameters[J]. Journal of Vibration and Shock, 2024, 43(22): 243-252

参考文献

[1] 钱七虎,中国城市地下空间开发利用的现状评价和前景展望[J].民防苑,2006,000(005):1-5.
QIAN Qihu,Current status evaluation and prospect of development and utilization of underground space in Chinese cities[J].Civil Defense Garden,2006,000(005): 1-5.(in Chinese)
[2] 杨春田.日本阪神地震地铁工程的震害分析[J].工程抗震,1996(2):40-42.
YANG Chuntian.Seismic damage analysis of Japan's Hanshin Earthquake subway project[J].Engineering Earthquake Resis-tance,1996(2):40-42.(in Chinese)
[3] An X,Shawky A A,Maekawa K.The collapse mechanism of a subway station during the Great Hanshin earthquake [J].Cement and concrete composites,1997,19(3):241-257.
[4] 杜修力,王刚,路德春.日本阪神地震中大开地铁车站地震破坏机理分析[J].防灾减灾工程学报,2016(2):165-171.
DU Xiuli,WANG Gang,LU Dechun. Earthquake damage mechanism analysis of Dakai metro station by Kobe earthquake [J] .Journal of Disaster Prevention and Miti-gation Engineering, 2016 (2) : 165-171.(in Chinese)
[5] 曹炳政,罗奇峰,马硕等.神户大开地铁车站的地震反应分析[J].地震工程与工程振动,2002(04):102-107.
CAO Bingzheng,LUO Qifeng,MA Shuo et al.Seismic response analysis of Daikai subway station in Hyogoken-nanbu earthquake[J]. Earthquake Engineering and Engineering Dynamics,2002(04):102-107(in Chinese).
[6] Xu C,Zhang Z,Li Y,et al.Seismic response and failure mechanism of underground frame structures based on dynamic centrifuge tests[J].Earthquake Engineering & Structural Dynamics, 2021, 50(7): 2031-2048.
[7] 杜修力,阴孟莎,刘洪涛,等.柱脚可更换的地下结构抗震截断柱技术性能分析[J].震灾防御技术,2019,14(3):524-534.
DU Xiuli,YIN Mengsha,LIU Hongtao,et al. Analysis of technical performance of underground structure seismic truncated columns with replaceable column foot [J]. Technology for Earthquake Disaster Prevention, 2019, 14(3): 524-534.(in Chinese)
[8] 许成顺,汪洋筱珊,杜修力,等.分体柱在地下车站结构中的减震效果研究[J].岩土工程学报,2021,43(4): 624-633.
XU Chengshun,WANG Yangxiaoshan,DU Xiuli,et al. Seismic mitigation effects of split columns in underground station structures [J].Chinese Journal of Geotechnical Engineering,2021,43(4):624-633.(in Chin-ese)
[9] Lu D,Wu C,Ma C,et al.A novel segmental cored column for upgrading the seismic performance of underground frame structures[J].Soil Dynamics and Earthquake Engineering, 2020,131(1):106011.
[10] Chen Z Y,Zhao H,Lou M L.Seismic performance and optimal design of framed underground structures with lead-rubber bearings[J].Structural Engineering and Mechanics,An Int'l Journal,2016,58(2):259-276.
[11] 于仲洋,张静堃,邱艳佳,等.叠合装配式地铁车站结构地震动力响应及减震措施研究[J].地震工程与工程振动,2023,43(04):235-244.
YU Zhongyang, ZHANG Jingyi, QIU Yanjia,et al.Study on seismic dynamic responses and damping measures of the superimposed prefabricated subway station structure [J]. Earthquake Engineering and Engineering Dynamics, 20231.43 (04): 235-244.
[12] 杜修力,许紫刚,许成顺等.摩擦摆支座在地下地铁车站结构中的减震效果研究[J].工程力学,2019,36(09): 60-67+88.
DU Xiuli,XU Zigang,XU Chengshun,et al. Seismic mitigation effect analysis on friction pendulum bearingapplied in the underground subway station [J]. Engineering Mechanics, 2019, 36(09): 60-67+88.(in Chinese)
[13] Ma C,Lu D,Du X.Seismic performance upgrading for underground structures by introducing sliding isolation bearings[J].Tunnelling and Underground Space Techn-ology,2018,74:1-9.
[14] Zhuang H,Wang W,Jin L,et al.Seismic performance of two-story subway station structures with different isolating systems[J].Earthquake Research Advances,2022, 2(4):100155.
[15] He Z,Chen Q.Upgrading the seismic performance of underground structures by introducing lead-filled steel_tube dampers[J].Tunnelling and Underground Space Technology, 2020, 108(3):103727.
[16] Saha A,Saha P,Patro S K.Seismic protection of the benchmark highway bridge with passive hybrid control system[J].Earthquakes and Structures,2018,15(3):227.
[17] Providakis C P .Effect of LRB isolators and supplemental viscous dampers on seismic isolated buildings under near-fault excitations[J].Engineering Structures,2008,30(5): 1187-1198.
[18] 杜修力,刘迪,许成顺,等.橡胶支座在浅埋地下框架结构中的减震效果研究[J].岩土工程学报,2021,43(10): 1761-1770.
DU Xiuli,LIU Di,XU Chengshun,etc. Seismic mitigation effect of shallow-covered underground frame station with rubber bearings [J] Chinese Journal of Geotechnical Engineering, 2021, 43 (10): 1761-1770.(in Chinese)
[19] Zheng Y,Yue C.Shaking table test study on the functionality of rubber isolation bearing used in underground structure subjected to earthquakes[J]. Tunnelling and Underground Space Technology, 2020, 98: 103153.
[20] 陈鹏.地铁车站地震动力响应及减隔震工程应用研究[D].兰州理工大学,2023.
CHEN Peng. Research on seismic dynamic response and seismic isolation engineering application of subway stations [D]. Lanzhou University of Technology, 2023
[21] Kelly T E, Skinner R I, Robinson W H. Seismic isolation for designers and structural engineers[M]. NICEE,2010.
[22] Bu X,Ledesma A,Lopez-Almansa F.Novel seismic design solution for underground structures. Case study of a 2-story 3-bay subway station [J] .Soil dynamics and earthquake engineering, 2022(Feb.):153.
[23] 郑明军,王文静,陈政南,等.橡胶Mooney-Rivlin模型力学性能常数的确定[J].橡胶工业, 2003, 50(8):462-465. 
ZHENG Mingjun,WANG Wenjing,CHEN Zhengnan, et al. Determination for mechanical constants of rubber Mooney-Rivlin model [J]. China Rubber Industry,2003, 50(8): 462-465.(in Chinese)
[24] 陈国兴,庄海洋.基于Davidenkov骨架曲线的土体动力本构关系及其参数研究[J].岩土工程学报,2005(08): 860-864.
CHEN Guoxing,ZHUANG Haiyang. Developed nonlinear dynamic constitutive relations of soils based on Davidenkov skeleton curve [J]. Chinese Journal of Geotechnical Engineering,2005(08):860-864.(in Chin- ese)
[25] 楼梦麟,王文剑,朱彤,等.土-结构体系振动台模型试验中土层边界影响问题[J].地震工程与工程振动,2000,20(4):30-36.
LOU Menglin,WANG Wenjian,ZHU Tong,et al. Soil lateral boundary effect in shaking fable model test of soil - structure system [J]. Earthquake Engineering and Engineering Dynamics,2000,20(4):30-36.(in Chinese)
[26] Kampitsis A E,Sapountzakis E J,Giannakos S K,et al.Seismic soil-pile-structure kinematic and inertial interaction-A new beam approach [J] .Soil Dynamics and Earthquake Engineering, 2013, 55:211–224.
[27] 董正方,王君杰,姚毅超.城市轨道交通矩形地下结构层间位移角研究[J].地下空间与工程学报,2014,10(S2): 1848-1852.
DONG Zhengfang, WANG Junjie, YAO Yichao. Research on story drift angle of urban mass transit rectangular underground structures [J]. Chinese Journal of Underground Space and Engineering, 2014 ,10(S2):1848-1852.(in Chinese)

PDF(2647 KB)

231

Accesses

0

Citation

Detail

段落导航
相关文章

/