地震载荷下高层垂直循环立体车库结构响应特性

田祖织1, 郭阳阳1, 谭立远1, 卫振勇2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (22) : 279-286.

PDF(2759 KB)
PDF(2759 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (22) : 279-286.
论文

地震载荷下高层垂直循环立体车库结构响应特性

  • 田祖织1,郭阳阳1,谭立远*1,卫振勇2
作者信息 +

Structural response characteristics of a vertical circulation stereo garage under seismic loading

  • TIAN Zuzhi1, GUO Yangyang1, TAN Liyuan*1, WEI Zhenyong2
Author information +
文章历史 +

摘要

为了探究高层垂直循环立体车库抗震薄弱区域,进一步提高其结构稳定性,本文开展了地震载荷下的高层垂直循环立体车库结构响应特性研究,基于模态分析结果,分别进行了地震载荷下的立体车库结构响应谱分析和时程分析。响应谱分析结果表明,车库整体结构最大位变形发生在顶部,局部最大变形发生在斜拉杆处;时程分析结果表明车库最大应力都集中在张紧装置固定板与钢架结构横梁连接处;在三种地震波作用下,车库结构X方向最大变形量分别为0.308mm、1.3649mm和0.9998mm,Y向车库结构最大变形量分别为15.167mm、10.011mm和9.7162mm。研究结果对高层立体停车结构设计及高层立体车库推广具有指导意义。

Abstract

In order to investigate the seismic weak areas of the high-rise vertical circulation garage and further improve its structural stability, this paper carries out the research on the structural response characteristics of the high-rise vertical circulation garage under seismic load. Based on the results of the modal analysis, the response spectrum and transient dynamics analysis of the garage under the seismic load are carried out respectively, and the seismic response spectrum and transient dynamics response of the garage structure under the seismic response spectrum are obtained. The dynamic response and transient response of the garage structure under seismic response spectrum are obtained. The results of response spectrum analysis show that the maximum deformation of the garage structure occurs at the top, and the local maximum deformation occurs at the diagonal tie rods; the results of transient dynamics analysis show that the maximum stresses of the garage are concentrated in the connection between the fixed plate of the tensioning device and the beams of the steel frame structure. Under the action of three kinds of seismic waves (EL, TH and RH), the maximum deformations of the garage structure in X-direction are 0.308 mm, 1.3649 mm and 0.9998 mm, and the maximum deformation of the garage structure in Y direction is 15.167mm, 10.011mm and 9.7162mm respectively.

关键词

地震载荷;立体车库;响应谱分析;时程分析  /

Key words

seismic load / stereo garage / response spectrum analysis / time course analysis 

引用本文

导出引用
田祖织1, 郭阳阳1, 谭立远1, 卫振勇2. 地震载荷下高层垂直循环立体车库结构响应特性[J]. 振动与冲击, 2024, 43(22): 279-286
TIAN Zuzhi1, GUO Yangyang1, TAN Liyuan1, WEI Zhenyong2. Structural response characteristics of a vertical circulation stereo garage under seismic loading[J]. Journal of Vibration and Shock, 2024, 43(22): 279-286

参考文献

[1] 左烨, 孙广俊, 金昊贵, 等. 曲线梁桥近断层地震响应分析[J]. 振动.测试与诊断, 2018, 38(03): 575-582.
ZUO Ye, SUN Guangjun, JIN Haogui, et al. Analysis of seismic response of curved bridge subjected to near-fault ground motion[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38(03): 575-582.
[2] 马林林, 薛建阳, 张锡城, 等. 考虑榫卯松动的古建筑木结构地震响应分析[J]. 振动工程学报, 2023,36(04): 748-756.
MA Linlin, XUE Jianyang, ZHANG Xicheng, et al. Theoretical model and seismic responses of structure equipped with concentrated damping system[J]. Journal of Vibration Engineering, 2023,36(04): 748-756. 
[3] 聂桂波, 王薇, 杜柯, 等.大跨空间结构抗震理论发展综述[J]. 世界地震工程, 2020, 36(02): 21-34.
NIE Guibo, WANG Wei, DU Ke, et al. A review and prospect of the seismic design theory for large span spatial structures[J]. World Earthquake Engineering, 2020, 36(02): 21-34. 
[4] 李立峰, 尹会娜, 唐嘉豪, 等. 大跨径斜拉桥横向合理抗震体系研究[J]. 振动与冲击, 2022, 41(06): 153-159.
LI Lifeng, YIN Huina, TANG Jiahao, et al. Reasonable lateral seismic system of a long-span cable stayed bridge[J]. Journal of vibration and shock, 2022, 41(06): 153-159.
[5] 陈智钊, 刘周强, 徐艳, 等. 分梁共墩式公轨合建双层高架桥的抗震分析[J]. 振动与冲击, 2023, 42(08): 79-86.
CHEN Zhizhao, LIU Zhouqiang, XU Yan, et al. Seismic analysis of an integrated double-deck viaduct with splited beams and shared piers[J]. Journal of vibration and shock, 2023, 42(08): 79-86
[6] 黄捷, 季忠, 段虎明. 机械结构实验模态分析及典型应用[J]. 中国测试, 2010, 36(2): 4-8.
HUANG Jie, JI Zhong, DUAN Huming. Experimental modal analysis of mechanical structure and typical applications[J]. CHINA MEASUREMENT & TEST, 2010, 36(2): 4-8.
[7] 张莹, 孙广俊, 李鸿晶. 钢筋混凝土框架近断层速度脉冲地震响应分析[J]. 振动.测试与诊断, 2020, 40(03): 611-619+632.
ZHANG Ying, SUN Guangjun, LI Hongjing. Near-fault velocity pulse motions on Seismic responses of the RC frame[J]. Journal of Vibration, Measurement & Diagnosis 2020, 40(03): 611-619+632.
[8] HE Yongjun, LIU Xiaohua, ZHOU Xuhong. Research on static properties and stability of high-rise tubular 3d parking structure with hoop stories [J]. Advanced Steel Construction 2014, 10(04): 426-441. 
[9] 马文勇, 黄铮汉, 郑德乾, 等. 高层建筑顶部围挡结构风荷载试验研究[J]. 振动.测试与诊断, 2022, 42(05): 967-972+1037-1038.
MA Wenyong, HUANG Zhenghan, ZHENG Dengqian, et al. Experimental study on wind loads on parapet wall for super high⁃rise buildings[J]. Journal of Vibration, Measurement & Diagnosis 2022, 42(05): 967-972+1037-1038. 
[10] Xu L J, Zhao G Ch, Liu Q Y, et al. Consecutive combined response spectrum[J]. Earthquake Engineering and Engineering Vibration, 2014, 13(04): 623-636.
[11] Duan J, Yan Z X, Guo R J. Response analysis of frame supporting structure of slope under harmonic vibration[J]. Mathematical Problems in Engineering, 2014, (2014): 1-13.
[12] 黄晨华, 李湘勤, 毛桂生. 垂直循环立体车库钢结构有限元分析[J]. 机械研究与应用, 2018, 31(01): 54-56+60.
HUANG Chenhua, LI Xiangqin, MAO Guisheng. Design of vertical circulating stereo garage steel structure by finite element analysis method[J]. Mechanical Research & Application, 2018, 31(01): 54-56+60.
[13] 何国旗, 唐洋洋. 城市街道上方立体车库钢结构分析及优化[J]. 机械设计与制造, 2021, 12(07): 1-5.
HE Guoqi, TANG Yangyang. Analysis and optimization of the steel structure of stereo sarage above urban streets[J]. Machinery Design & Manufacture, 2021, 12(07): 1-5.
[14] 王志勇. 电梯式立体车库结构地震响应分析[D]. 长沙: 湖南大学, 2010.
WANG Zhiyong. The research on seismic responses of elevator style garage[D]. Changsha: Hunan University, 2010.
[15] 胡旭. 机械式升降平移车库的动态性能研究[D]. 南宁: 广西大学, 2019.
HU Xu. Research on the dynamic performance of mechanical lift and translation garage[D]. Nanning: Guangxi University, 2019.
[16] 李秋实. 井筒式地下立体车库方案比选及地震反应特性分析[D]. 南昌: 南昌大学, 2022.
LI Qiushi. Comparison and selection of shaft type underground stereo garage and analysis of seismic response characteristics[D]. Nanchang: Nanchang University, 2022.
[17] Sultana P, Youssef MA. Seismic performance of steel moment resisting frames utilizing superelastic shape memory alloys[J]. Journal of constructional steel research 2016 125: 239-251.
[18] Lee J, Kong J, Kim J. Seismic Performance Evaluation of Steel Diagrid Buildings[J]. International journal of steel structures 2018, 18(03): 1035-1047.
[19] 何文福, 徐运林, 戴柳丝, 等. 一种聚合阻尼耗能结构理论模型与地震响应研究[J]. 振动工程学报, 2023, 36(3): 748-756.
HE Wenfu, XU Yunlin, DAI Liusi, et al. Theoretical model and seismic responses of structure equipped with concentrated damping system[J]. Journal of Vibration Engineering, 2023, 36(03): 748-756.
[20] Katsimpini PS, Papagiannopoulos GA, Askouni PK et al. Seismic response of low-rise 3-D steel structures equipped with the seesaw system[J]. Soil dynamics and earthquake engineering 2020 128:105877.

PDF(2759 KB)

Accesses

Citation

Detail

段落导航
相关文章

/