考虑脉冲效应的近断层地震动能量谱研究

陈曦1, 2, 陈清军1, 2, 廖聪1, 2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (22) : 305-317.

PDF(3637 KB)
PDF(3637 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (22) : 305-317.
论文

考虑脉冲效应的近断层地震动能量谱研究

  • 陈曦1,2,陈清军*1,2,廖聪1,2
作者信息 +

Energy spectrum of near-fault ground motion considering pulse effects

  • CHEN Xi1,2, CHEN Qingjun*1,2, LIAO Cong1,2
Author information +
文章历史 +

摘要

基于能量的设计方法被广泛应用于结构抗震设计与性能评估,而确定结构能量耗散需求是设计过程中需解决的首要问题。目前针对近断层脉冲型地震动能量谱特征的研究仍然不够充分,很可能低估其对结构的破坏作用。为此,本文从PEER强震数据库(Pacific Earthquake Engineering Research Center)中选取了789条近断层地震动作为输入,并从中识别出192条脉冲型地震动,重点分析了近断层脉冲型地震动与无脉冲地震动的能量谱差异,研究了地震动特征参数及恢复力模型参数对能量谱的影响,并建立了考虑脉冲效应的近断层地震动实用设计能量谱。结果表明:(1)场地越软,近断层地震动能量谱谱值越大,且各类场地下脉冲型地震动能量谱平均谱的谱值明显大于无脉冲地震动;(2)阻尼比ξ增大对输入能量谱具有削峰作用,并减缓其长周期段的衰减速度,延性比μ增大会提高输入能量谱及阻尼耗能谱峰值,并降低滞回耗能谱峰值,屈服后刚度比α对能量谱影响较小,可近似忽略其影响;(3)脉冲型地震动的输入能量设计谱平台段长度远大于无脉冲地震动,所建立的设计能量谱可为近断层区域基于能量的抗震设计提供参考。

Abstract

Energy-based design methods play a pivotal role in seismic design and performance evaluation of structures. A critical initial step in the design process involves determining the energy dissipation requirements. Notably, existing studies often overlook characterizing near-fault pulse-like ground motions, potentially underestimating the damaging effects of pulse-like motions. In this paper, 789 near-fault ground motions are selected as inputs from the Pacific Earthquake Engineering Research Center (PEER) earthquake database, with 192 pulse-like ground motions identified among them. The study systematically compares energy spectra differences under various seismic characteristic parameters and resilience model parameters. The practical design input energy spectrum for near-fault ground motion, considering pulse effects, is established. Key findings include: (1) Softer sites yield larger spectral values for near-fault ground motion energy spectra. Importantly, the average spectral value of pulse-like ground motion exceeds pulseless ground motion across different site conditions. (2) The damping ratio ξ clips the input energy spectrum, decelerating long-period section attenuation. Ductility ratio μ increases the peaks of input energy and damping dissipation spectra while reducing the hysteretic dissipation spectrum. Post-yield stiffness ratio α minimally impacts the energy spectrum. (3) The platform segment length of the input energy design spectrum for pulse-like ground motion is notably larger than pulseless ground motion. The established design energy spectrum can serve as a reference for energy-based seismic design in near-fault regions.

关键词

近断层地震动 / 速度脉冲 / 能量谱 / 输入能量设计谱

Key words

near-fault ground motion / velocity pulse / energy spectrum / design input energy spectrum

引用本文

导出引用
陈曦1, 2, 陈清军1, 2, 廖聪1, 2. 考虑脉冲效应的近断层地震动能量谱研究[J]. 振动与冲击, 2024, 43(22): 305-317
CHEN Xi1, 2, CHEN Qingjun1, 2, LIAO Cong1, 2. Energy spectrum of near-fault ground motion considering pulse effects[J]. Journal of Vibration and Shock, 2024, 43(22): 305-317

参考文献

[1] Aki K, Richards P G. Quantitative seismology, theory and methods [M]. San Francisco, CA: W. H. Freemen and Company, 1980:220-345.
[2] 刘启方,袁一凡,金星等. 近断层地震动的基本特征 [J]. 地震工程与工程振动, 2006, (01): 1-10.
LIU Qifang, YUAN Yifan, JIN Xing, et al. Basic characteristics of near-fault ground motion [J]. Earthquake Engineering and Engineering Vibration, 2006, (01): 1-10.
[3] Seible F, Priestley M J N. Lessons learned from bridge performance during Northridge earthquake[J]. Special Publication, 1999, 187: 29-56.
[4] Menoni S. Chains of damages and failures in a metropolitan environment: some observations on the Kobe earthquake in 1995[J]. Journal of hazardous materials, 2001, 86(1-3): 101-119.
[5] Tsai K C, Hsiao C P, Bruneau M. Overview of building damages in 921 Chi-Chi earthquake[J]. Earthquake Engineering and Engineering Seismology, 2000, 2(1): 93-108.
[6] 李明,谢礼立,杨永强,等. 基于反应谱的近断层地震动潜在破坏作用分析 [J]. 西南交通大学学报, 2010, 45 (03): 331-335.
LI Ming, XIE Lili, YANG Yongqiang, et al. Potential Damage Analysis of Near-Fault Ground Motion Based on Response Spectra [J]. Journal of Southwest Jiaotong University, 2010, 45 (03): 331-335.
[7] 贾俊峰,杜修力,韩强. 近断层地震动特征及其对工程结构影响的研究进展 [J]. 建筑结构学报, 2015, 36 (01): 1-12. 
JIA Junfeng, DU Xiuli, HAN Qiang. A state-of-the-art review of near-fault earthquake ground motion characteristics and effects on engineering structures [J]. Journal of Building Structures, 2015, 36 (01): 1-12.
[8] 黎璟,杨华平,钱永久等. 近断层脉冲型地震动的残余位移系数谱研究 [J]. 振动与冲击, 2019, 38 (10): 169-176.
LI Jing, YANG Huaping, QIAN Yongjiu, et al. Residual displacement coefficient spectrum for structures under near-fault pulse-like ground motions [J]. Journal of Vibration and Shock, 2019, 38 (10): 169-176.
[9] Housner G W. Limit Design of Structures to Resist Earthquakes[C]//Proc World Conference of Earthquake Engineering.1956.
[10] Sucuoǧlu H, Nurtuǧ A. Earthquake ground motion characteristics and seismic energy dissipation[J]. Earthquake engineering & structural dynamics, 1995, 24(9): 1195-1213.
[11] 何利,叶献国. 基于复合强度指标的弹塑性输入能量谱研究 [J]. 工程力学, 2013, 30 (04): 7-14.
HE Li, YE Xianguo. Research on the elastic-plastic input energy spectra based on compound intensity indicator [J]. Engineering Mechanics, 2013, 30 (04): 7-14. 
[12] 陈清军,袁伟泽. 基于长周期地震动记录的SDOF体系能量谱探讨 [J]. 振动与冲击, 2013, 32 (10): 36-42+54.
CHEN Qingjun, YUAN Weize. Energy spectrum of SDOF system based on long-period ground motion records [J]. Journal of Vibration and Shock, 2013, 32 (10): 36-42+54.
[13] 李宇,李琛,赵福志,等. 长周期地震动的能量反应谱 [J]. 湖南大学学报(自然科学版), 2021, 48 (05): 80-92.
LI Yu, LI Chen, ZHAO Fuzhi, et al. Energy response spectra of long-period ground motions [J]. Journal of Hunan University (Natural Sciences), 2021, 48 (05): 80-92.
[14] Mollaioli F, Bruno S, Decanini L D, et al. Characterization of the dynamic response of structures to damaging pulse-type near-fault ground motions[J]. Meccanica, 2006, 41: 23-46.
[15] 程光煜,叶列平. 弹塑性SDOF系统的地震输入能量谱 [J]. 工程力学, 2008, (02): 28-39.
CHENG Guangyu, YE Lieping. Earthquake input energy spectrum for inelastic SDOF systems [J]. Engineering Mechanics, 2008, (02): 28-39.
[16] Shargh G B, Barati R. Estimation of inelastic seismic input energy[J]. Soil Dynamics and Earthquake Engineering, 2021, 142: 106505.
[17] 江辉,朱晞. 中、美主要抗震设计规范加速度谱的近断层地震动能量检验 [J]. 地震学报, 2008, (05): 508-517+550.
JIANG Hui, ZHU Xi. Testing the acceleration spectra given by China and USA seismic codes based on energy supply in near-fault region [J]. Acta Seismologica Sinica, 2008, (05): 508-517+550.
[18] Alici F S and Sucuoglu H. Elastic and inelastic near-fault input energy spectra[J]. Earthquake Spectra, 2018, 34(2): 611-637.
[19] Li Y, Li C, Zhao G H. Seismic isolation design for simply-supported beam bridges based on the energy balance method under near-fault ground motions[J]. Soil Dynamics and Earthquake Engineering, 2021, 145: 106730.
[20] 王博,代慧娟,吴涛,等. 近场与远场长周期地震动对高层结构作用机理比较分析 [J]. 振动与冲击, 2018, 37 (12): 123-130.
WANG Bo, DAI Huijuan, WU Tao, et al. Comparative analysis of action mechanisms for high-rise structures under near-fault and far-field long-period ground motions [J]. Journal of Vibration and Shock, 2018, 37 (12): 123-130.
[21] 张凡,李帅,颜晓伟,等. 近断层脉冲型地震动作用下大跨斜拉桥地震响应分析 [J]. 振动与冲击, 2017, 36 (21): 163-172+184.
ZHANG Fan, LI Shuai, YAN Xiaowei, et al. Effects of near-fault pulse-type ground motions on the seismic responses of a long-span cable-stayed bridge [J]. Journal of Vibration and Shock, 2017, 36 (21): 163-172+184.
[22] Chen Z Y, Liu Z Q. Effects of pulse-like earthquake motions on a typical subway station structure obtained in shaking-table tests[J]. Engineering Structures, 2019, 198: 109557.
[23] 李闯,宋志强,刘升欢. 近断层地震动作用下易液化深厚覆盖层场地上高土石坝动力响应 [J]. 振动与冲击, 2023, 42 (17): 228-237.
LI Chuang, SONG Zhiqiang, LIU Shenghuan. Dynamic response of high earth-rock dam on site with easily liquefied and deep overburden under near fault ground motion [J]. Journal of Vibration and Shock, 2023, 42 (17): 228-237.
[24] 宋志强,刘琳,王飞等. 近断层P波斜入射下沥青混凝土心墙坝响应分析 [J]. 振动与冲击, 2023, 42 (07): 245-253.
SONG Zhiqiang, LIU Lin, WANG Fei, et al. Response analysis of asphalt concrete core dam under oblique incidence of near-fault P-wave [J]. Journal of Vibration and Shock, 2023, 42 (07): 245-253.
[25] 陈笑宇,王东升,付建宇,等. 近断层地震动脉冲特性研究综述 [J]. 工程力学, 2021, 38 (08): 1-14+54.
CHEN Xiaoyu, WANG Dongsheng, FU Jianyu, et al. State-of-the-art review on pulse characteristics of near-fault ground motions [J]. Engineering Mechanics, 2021, 38 (08): 1-14+54.
[26] 丁龙兵,胡进军,李培旭等. 土耳其地震序列的近断层脉冲型地震动识别与特征分析 [J]. 振动与冲击, 2023, 42 (23): 71-79.
DING Longbing, HU Jinjun, LI Peixu, et al. Identification and characterization of pulse-like ground motion in the Turkey earthquake sequence [J]. Journal of Vibration and Shock, 2023, 42 (23): 71-79.
[27] Shahi S K, Baker J W. An empirically calibrated framework for including the effects of near-fault directivity in probabilistic seismic hazard analysis[J]. Bulletin of the Seismological Society of America, 2011, 101(2): 742-755.
[28] Li C, Zuo Z, Kunnath S, et al. Orientation of the strongest velocity pulses and the maximum structural response to pulse-like ground motions[J]. Soil Dynamics and Earthquake Engineering, 2020, 136: 106240.
[29] Zhai C, Chang Z, Li S, et al. Quantitative identification of near-fault pulse-like ground motions based on energy[J]. Bulletin of the Seismological Society of America, 2013, 103(5): 2591-2603.
[30] 吕红山,赵凤新. 适用于中国场地分类的地震动反应谱放大系数 [J]. 地震学报, 2007, (01): 67-76+114.
LV Hongshan, ZHAO Fengxin. Site coefficients suitable to China site category [J]. Acta Seismologica Sinica, 2007, (01): 67-76+114.
[31] 中华人民共和国住房和城乡建设部.建筑抗震设计规范(2016年版):GB 50011-2010[S].北京: 中国建筑工业出版社, 2016.

PDF(3637 KB)

127

Accesses

0

Citation

Detail

段落导航
相关文章

/