基于Halbach阵列轴向式电涡流阻尼器性能提升

朱前坤1, 梁玉坤1, 王宪玉1, 2, 杜永峰1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (22) : 45-52.

PDF(1993 KB)
PDF(1993 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (22) : 45-52.
论文

基于Halbach阵列轴向式电涡流阻尼器性能提升

  • 朱前坤*1,梁玉坤1,王宪玉1,2,杜永峰1
作者信息 +

Performance enhancement of axial eddy current dampers based on halbach arrays

  • ZHU Qiankun*1,LIANG Yukun1,WANG Xianyu1,2,DU Yongfeng1
Author information +
文章历史 +

摘要

为了提高轴向式电涡流阻尼器的阻尼性能,引入Halbach永磁阵列,建立了Halbach阵列轴向式电涡流阻尼器(Halbach Array Axial Eddy Current Damper,HAECD)模型。首先阐明了HAECD的整体构造、工作原理与力学特性;采用三维电磁场有限元瞬态分析方法验证电涡流单元阻尼系数计算的准确性。然后建立四种阵列方式的电涡流阻尼单元计算模型并进行了优化分析。最后分析了永磁体厚度、磁化角度及磁极配比对HAECD阻尼系数的影响。研究结果表明:Halbach阵列相较于其他阵列方式,在同等磁体体积情况下的阻尼系数提升率最高可达59.2%;针对本装置,适当增加永磁体厚度能有效提升阻尼系数,最优磁体厚度为31mm;磁化角度为2°时阻尼系数最大;阻尼系数随着磁极配比的增大而逐渐缓慢增加,磁极配比为2.5时,阻尼性能最优。

Abstract

In order to improve the damping performance of axial eddy current damper, the model of axial eddy current damper (Halbach Array Axial Eddy Current Damper,HAECD) of Halbach array is established by introducing Halbach permanent magnet array. Firstly, the overall structure, working principle and mechanical properties of HAECD are expounded, and the three-dimensional electromagnetic field finite element transient analysis method is used to verify the accuracy of eddy current element damping coefficient calculation. Then the eddy current damping element calculation models of four array modes are established and optimized. Finally, the effects of permanent magnet thickness, magnetization angle and magnetic pole ratio on the damping coefficient of HAECD are analyzed. The results show that compared with other arrays, the damping coefficient of Halbach array can be increased by up to 59.2% under the same magnet volume. For this device, properly increasing the thickness of permanent magnet can effectively increase the damping coefficient, the optimal magnet thickness is 31mm, and the maximum damping coefficient is obtained when the magnetization angle is 2 °. The damping coefficient increases slowly with the increase of magnetic pole ratio, and the damping performance is the best when the magnetic pole ratio is 2.5.

关键词

桥梁结构 / 振动控制 / 阵列优化 / 参数分析 / Halbach阵列

Key words

bridge structure / vibration control / Array optimization / parametric analysis / Halbach array

引用本文

导出引用
朱前坤1, 梁玉坤1, 王宪玉1, 2, 杜永峰1. 基于Halbach阵列轴向式电涡流阻尼器性能提升[J]. 振动与冲击, 2024, 43(22): 45-52
ZHU Qiankun1, LIANG Yukun1, WANG Xianyu1, 2, DU Yongfeng1. Performance enhancement of axial eddy current dampers based on halbach arrays[J]. Journal of Vibration and Shock, 2024, 43(22): 45-52

参考文献

[1] Sodano H A, Bae J S. Eddy current damping in structures[J]. Shock and Vibration Digest, 2004, 36(6): 469.
[2] Shin H J, Choi J Y, Cho H W, et al. Analytical torque calculations and experimental testing of permanent magnet axial eddy current brake[J]. IEEE Transactions on Magnetics, 2013, 49(7): 4152-4155. 
[3] Valderas D, Mesa I, Adín I, et al. Modeling eddy current brake emissions for electromagnetic compatibility with signaling devices in high-speed railways[J]. IEEE Transactions on Vehicular Technology, 2017, 66(11): 9743-9752.
[4] Detoni J G, Cui Q, Amati N, et al. Modeling and evaluation of damping coefficient of eddy current dampers in rotordynamic applications[J]. Journal of Sound and Vibration, 2016, 373: 52-65.
[5] Lu X, Zhang Q, Weng D, et al. Improving performance of a super tall building using a new eddy‐current tuned mass damper[J]. Structural Control and Health Monitoring, 2017, 24(3): e1882.
[6] 陈政清, 张弘毅, 黄智文. 板式电涡流阻尼器有限元仿真与参数优化[J]. 振动与冲击, 2016, 35(18): 123-127. 
CHEN Zhengqing, ZHANG Hongyi, HUANG Zhiwen. FEM simulation and parameter optimization of a planar eddy current damper[J]. Journal of Vibration and Shock, 2016, 35(18): 123-127.
[7] Zhang H, Kou B, Jin Y, et al. Modeling and analysis of a novel planar eddy current damper[J]. Journal of Applied Physics, 2014, 115(17). 
[8] 汪志昊, 郜辉, 张新中, 等. 单摆式电涡流 TMD 装置优化设计与模型试验研究[J]. 振动与冲击, 2018, 37(9).
WANG Zhihao, GAO Hui, ZHANG Xinzhong, et al. Optimization design and model tests for a pendulum eddy-current tuned mass damper [J]. Journal of Vibration and Shock, 2018, 37(9). 
[9] 黄智文. 电涡流阻尼器理论研究及其在桥梁竖向涡振控制中的应用[D]. 长沙: 湖南大学, 2016.
Huang Z-W. Theoretical Study of Eddy Current Damper and Its Application in Vertical Vortex-induced Vibration Control of Bridges [D]. Changsha: Hunan University, 2016. 
[10] Halbach K. Physical and optical properties of rare earth cobalt magnets[J]. Nuclear Instruments and Methods in Physics Research, 1981, 187(1): 109-117.
[11] Zhu Z Q, Howe D. Halbach permanent magnet machines and applications: a review[J]. IEE Proceedings-Electric Power Applications, 2001, 148(4): 299-308.
[12] Hei G, Xu Z, Zhang B, et al. Design of permanent magnet with high magnetic induction intensity and high uniformity based on Halbach array[C]//7th International Symposium on Advances in Electrical, Electronics, and Computer Engineering. SPIE, 2022, 12294: 659-664.
[13] 张予希,颜建虎,池松,周旭,郭保成.考虑端部效应的动子无源型Halbach磁悬浮永磁直线电机电磁力分析[J].电机与控制学报:1-9. 
ZHANG Yu-Xi, YAN Jian-Hu, CHI Song, ZHOU Xu, GUO Bao-Cheng. Electromagnetic force analysis of passive mover Halbach maglev permanent magnet linear synchronous motor considering end effects [J]. Electric Machines and Control:1-9. 
[14] Huang R, Liu C, Song Z, et al. Design and analysis of a novel axial-radial flux permanent magnet machine with Halbach-array permanent magnets[J]. Energies, 2021, 14(12): 3639.
[15] 宋蕾, 吴峻, 杨宇. 基于 Halbach 永磁体阵列的无人机电磁弹射器双边型涡流制动[J]. 电机与控制应用, 2016, 43(7): 21-26. 
SONG Lei, WU Jun, YANG Yu. Double-Sided Eddy Current Brake of Electromagnetic Launcher for Unmanned Aerial Vehicle Based on Halbach permanent magnet array[J]. Electric Machines & Control Application, 2016, 43(7): 21-26. 
[16] Jang S M, Lee S H. Comparison of three types of permanent magnet linear eddy-current brakes according to magnetization pattern[J]. IEEE Transactions on Magnetics, 2003, 39(5): 3004-3006.
[17] 李启坤,葛建立,李加浩,杨国来,孙全兆.强冲击载荷作用下Halbach阵列电涡流阻尼器动力学特性仿真分析[J].弹道学报,2021,33(01):23-28. 
LI Qikun, GE Jianzhu, LI Jiahao, YANG Guolai, SUN Quanzhao. Simulation Analysis of Dynamic Characteristics of Halbach Array Eddy Current Damper Under Strong Impact Load [J]. Journal of Ballistics,2021,33(01):23-28. 
[18] 黄智文,蒲怡达,张弘毅,华旭刚,陈政清.Halbach阵列板式电涡流阻尼单元参数分析与优化设计[J].中国公路学报,2023,36(07):67-79. 
HUANG Zhiwen,PU Yida,ZHANG Hongyi,HUA Xugang,CHEN Zhengqing. Parametric Analysis and Optimal Design of the Planar Eddy Current Damping Element with Halbach-array Magnets [J]. China Journal of Highway and Transport,2023,36(07):67-79.
[19] 尹光照,汪志昊,程志鹏,郑梦斐,刘洋.磁致负刚度电涡流惯质阻尼器力学性能试验与仿真[J].振动与冲击,2022,41(10):309-316. 
YIN Guangzhao,WANG Zhihao,CHENG Zhipeng,ZHENG Mengfei,LIU Yang. Numerical simulation and experimental study on mechanical properties of a magnetic negative stiffness eddy-current inertia damper [J]. Journal of Vibration and Shock,2022,41(10):309-316.
[20] Wang J, Lin H, Fang S, et al. A general analytical model of permanent magnet eddy current couplings[J]. IEEE Transactions on Magnetics, 2013, 50(1): 1-9.

PDF(1993 KB)

Accesses

Citation

Detail

段落导航
相关文章

/