满载运煤敞车超常低周疲劳刚柔耦合评估新方法

靳世英1, 朴思扬2, 聂春戈2, 张俊林3, 李向伟3, 朴明伟1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (22) : 70-80.

PDF(4790 KB)
PDF(4790 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (22) : 70-80.
论文

满载运煤敞车超常低周疲劳刚柔耦合评估新方法

  • 靳世英1,朴思扬*2,聂春戈2,张俊林3,李向伟3,朴明伟1
作者信息 +

Novel method for assessing extraordinary low-cycle fatigue of laden coal gondola cars using the rigid-flex coupling simulation technique

  • JIN Shiying1,PIAO Siyang*2,NIE Chunge2,ZHANG Junlin3,LI Xiangwei3,PIAO Mingwei1
Author information +
文章历史 +

摘要

备用传力路径变化不确定性使准静态应变能成为决定平面心盘旁承接口耦合程度的最重要影响因素之一,既有方法丧失了小位移线弹假设的应用前提。根据这一相关性发现,提出了刚柔耦合疲劳损伤评估新方法。为了攻克散料运输铁路货车刚柔耦合仿真难题,采用了实体单元及边界共节点处理技术。在正常AAR5级谱和局部扭曲叠加谱激励输入下满载运煤敞车刚柔耦合仿真分析表明:上旁承运行载荷增大迫使车体结构扭曲产生不高于2 Hz的低频敏感响应。钩缓冲击座附近焊缝疲劳损伤评估结果与现场塑性破坏完全吻合。由于局部刚度不足,短竖梁补强设计也很难奏效。借鉴通用敞车耳板铆接的设计经验,合理制订了具有针对性的结构补强方案,使满载运煤敞车不会再发生上述塑性破坏。

Abstract

The uncertainty of alternative load path variation makes the quasi-static strain energy become one of the most important factors determining the coupling extent on the interface of flat center plate and side-bearings, which deprives the existing methods of their application premise of small displacement and linear elasticity assumption. According to this finding of above-mentioned correlationship, a novel method for assessing fatigue damage was proposed using the rigid-flex coupling simulation technique. In order to overcome the difficult problem in rigid-flex coupling simulations of rail freight cars for bulk material transportation, the solid elements were adopted with boundary co-node transactions. Under the excitation inputs of both normal AAR5 spectrum and local twist superimposed spectrum, the analyses of rigid-flex coupling simulations for laden coal gondola car indicate that an increase in the operating loads of upper side-bearings makes the distortion of carbody structure produce a low-frequency sensitive response of no higher than 2 Hz. The fatigue damage assessment results of the welds around impact seat of hook and buffer are completely consistent with on-site plastic failure. Due to the insufficient local stiffness, the reinforced design of short vertical struts is also difficult to be effective. Drawing on the experience of riveting design for ear plates in general gondola cars, a targeted structural reinforced design was reasonably formulated to prevent the foregoing plastic damage from occurring again in laden coal gondola cars.

关键词

满载运煤敞车 / 刚柔耦合仿真技术 / 模态结构应力恢复 / 焊缝疲劳损伤评估 / 超常低周疲劳

Key words

laden coal gondola cars / rigid-flex coupling simulation technique / modal structural stress recovery / weld fatigue damage assessment / extraordinary low-cycle fatigue

引用本文

导出引用
靳世英1, 朴思扬2, 聂春戈2, 张俊林3, 李向伟3, 朴明伟1. 满载运煤敞车超常低周疲劳刚柔耦合评估新方法[J]. 振动与冲击, 2024, 43(22): 70-80
JIN Shiying1, PIAO Siyang2, NIE Chunge2, ZHANG Junlin3, LI Xiangwei3, PIAO Mingwei1. Novel method for assessing extraordinary low-cycle fatigue of laden coal gondola cars using the rigid-flex coupling simulation technique[J]. Journal of Vibration and Shock, 2024, 43(22): 70-80

参考文献

[1] ZHANG, Q., LI, X., MA, Y., et al. Fatigue test loading method for wagon body based on measured load[J]. Railway Sciences, 2023, 2(1): 68-83
[2] PANDEY M. Effect of carbody flexibility on the dynamic performance of an empty freight wagon[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 2022, 236(5):490-500.
[3] FOMIN O.V., LOVSKA A.O. Examination of the loadbearing structure of a rail car with convex walls during transportation by railway ferry[J]. Volodymyr Dahl State University of Ukraine, 2022, 273(3): 97-103 (in Russian).
[4] ZHONG Y G, ZHAN Y, ZHAO G. Fatigue analysis of structure of gondola car body based on rigid-flexible coupling multi-body systems[C]//Proceedings of the 11th World Congress on Computational Mechanics, WCCM. 2014.
[5] 中华人民共和国铁道行业标准. 机车车辆强度设计及试验鉴定规范, 车体第2部分:货车车体: TB/T 3550.2—2019 [S]. 北京:国家铁路局, 2019: 4.
[6] AAR Manual of Standards and Recommended Practices: Design, Fabrication, and Construction of Freight Cars, C-Ⅱ: M1001[S]. Washington, Safety and Operations, AAR, 2015: 457, 469.
[7] Huimin Wu. Effect of Track Twist on Vehicle Dynamic Performance (R-925)[R]. TTCI,Pueblo,December 1998.
[8] SHUST W C, ILER D. Variability in natural frequencies of railroad freight car components[C]//Structural Dynamics, Volume 3: Proceedings of the 28th IMAC, A Conference on Structural Dynamics, 2010. New York, NY: Springer New York, 2011: 1273-1286.
[9] 杨晶,吴荣坤,彭钰,等.驮背运输2车组系统内力复杂性及其处理技术对策[J].振动与冲击,2018,37(17):185-195.
YANG Jing,WU Rongkun,PENG Yu,et al. Constraint inner force complexity of a two-vehicle set system for piggyback transport and its processing technique strategies[J]. Journal of Vibration and Shock, 2018,37(17):185-195.
[10] 杨晶,李华,朴明伟,等.基于启发式模型仿真的货车转向架悬挂非线性研究[J].振动与冲击,2019,38(03):116-124.
YANG Jing,LI Hua,PIAO Mingwei,et al. Suspension nonlinearity of freight bogie based on heuristic model simulation[J]. Journal of Vibration and Shock, 2019,38(03):116-124.
[11] FOMIN O V, LOVSKA A O, SKOK P O, et al. Feasibility Study for Using the Fillers in the Bearing Structure Components of a Gondola Car[J]. Scientific Bulletin of National Mining University, 2022 (1):51- 56.
[12] 中车齐齐哈尔车辆有限公司. 基于疲劳仿真方法的产品平台模块典型结构及焊缝研究—铁路货车上旁承结构及运行载荷研究[R].国家重点计划研发项目 2020YFB1200200ZL-02, 2022.12.
[13] 郭冲冲,武文华,吴国东,等.基于多体动力特征的海洋核动力平台主铰节点疲劳特性研究[J].中国造船,2023,64(01):131-145.
GUO Chongchong, WU Wenhua, WU Guodong, et al. Fatigue Damage Analysis of Primary Hinge Joint on Marine Nuclear Power Platform Based on Feature of Multibody Dynamics[J]. Shipbuilding of China, 2023,64(01):131-145.
[14] D. Negrut, J. L. Ortiz. A practical approach for the linearization of the constrained multibody dynamics equations[J]. Journal of Computational and Nonlinear Dynamics,1(3) (2006) 230-239. 
[15] HAUG E J, NEGRUT D, LANCU M. A state-space-based implicit integration algorithm for differential-algebraic equations of multibody dynamics[J]. Journal of Structural Mechanics, 1997, 25(3): 311-334.
[16] 贾宏宇, 郑史雄. 直接求解多维多点地震动方程的虚拟激励法[J]. 工程力学, 2013, 30(3): 341-346.
JIA Hongyu, ZHENG Shixiong. Pseudo excitation method of direct solving ground motion equation of multi-dimensional and multi-support excitation[J]. Engineering Mechanics, 30(3):341-346.
[17] PEI X, RAVI S K, DONG P, et al. A multi-axial vibration fatigue evaluation procedure for welded structures in frequency domain[J]. Mechanical Systems and Signal Processing, 2022, 167:108516.
[18] 朴思扬.运载火箭结构动力学建模及频域响应预示[D]. 大连:大连理工大学,2022.
[19] PREUMONT, A. Twelve lectures on structural dynamics series [M]. In Solid Mechanics and Its Applications; Barber, J., Klarbring, A., Eds.; Springer: Berlin, Germany, 2013.
[20] STOLPE M, VERBART A, ROJAS-LABANDA S. The equivalent static loads method for structural optimization does not in general generate optimal designs [J]. Structural and Multidisciplinary Optimization, 2018, 58: 139-154. 
[21] DO C B .Convex Optimization Overview (cnt'd)[DB/OL].  CS229 Lecture notes, 2009. (2009-11-29)[2024-03-08].. https://cs229.stanford.edu/section/cs229-cvxopt2.pdf. 
[22] WU, X., WEI, Z., KANG, H., et al. A Structural Stress Recovery Procedure for Fatigue Life Assessment of Welded Structures[J]. SAE Technical Paper 2017-01-0343, 2017.
[23] DONG P, HONG J K. A robust structural stress parameter for evaluation of multiaxial fatigue of weldments[J]. Journal of ASTM International, 2006, 3(7): JAI100348.
[24] PEI X, DONG P. An analytically formulated structural strain method for fatigue evaluation of welded components incorporating nonlinear hardening effects [J]. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42(1): 239-255.
[25] DONG P, CAO Z, HONG J K. Low-cycle fatigue evaluation using the weld master S-N curve [C]//ASME Pressure Vessels and Piping Conference. 2006, 47527: 237-246.
[26] PEI X, LI X, ZHAO S, et al. Low cycle fatigue evaluation of welded structures with arbitrary stress-strain curve considering stress triaxiality effect [J]. International Journal of Fatigue, 2022. 
[27] BUFALARI G, DEN B H, KAMINSKI M L. Mode-III fatigue of welded joints in steel maritime structures: Weld notch shear stress distributions and effective notch stress based resistance [J]. International Journal of Fatigue, 2022, 165: 107210.
[28] DONG P, WEI Z, HONG J K. A path-dependent cycle counting method for variable-amplitude multi-axial loading[J]. International Journal of Fatigue, 2010, 32(4): 720-734.
[29] Peng Bo, Wu Xingwen, Mi Caiying, et al. Fatigue crack driving force of railway bogie frames using rigid-flexible coupled dynamics: A case for beam model[J], International Journal of Fatigue, 2024, 181: 108122.
[30] T. Dirlik, D. Benasciutti. Dirlik and Tovo-Benasciutti Spectral Methods in Vibration Fatigue: A Review with a Historical Perspective [J], Metals 11(9) (2021) 1333. 

PDF(4790 KB)

Accesses

Citation

Detail

段落导航
相关文章

/