考虑转动自由度影响的格构式塔架风致响应及风荷载识别研究

张庆1, 付兴2, 江文强1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (22) : 96-105.

PDF(2206 KB)
PDF(2206 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (22) : 96-105.
论文

考虑转动自由度影响的格构式塔架风致响应及风荷载识别研究

  • 张庆1,付兴*2,江文强1
作者信息 +

Wind-induced response and wind load identification of lattice towers considering the influence of rotational degrees of freedom

  • ZHANG Qing1,FU Xing*2,JIANG Wenqiang1
Author information +
文章历史 +

摘要

格构式塔架在基础设施中有着广泛应用,风荷载及风致响应的获取对评估格构式塔架的健康状态具有重要意义,但风荷载难以直接测量,通过容易测量的响应间接重构他们成为解决该问题的途径之一。经典的风荷载识别方法没有考虑转动的影响,导致识别结果不准确。本文在监测数据已知的前提下,提出了一种考虑转动自由度影响的风荷载识别方法,首先由应变响应重构出动态位移和模态信息,然后使用卡尔曼滤波算法计算出速度响应和模态风荷载,最后建立包含转动自由度影响的质量矩阵,并识别出结构所受风荷载。格构式塔架数值模拟证明,该方法重构的风荷载在时域和频域均和理论值高度符合,最高测点处均值和均方根误差不超过7%。54.5 m高的足尺塔实验进一步表明,所提方法用于实际结构的重构误差一般在10%以内。

Abstract

Lattice towers are widely used in infrastructure, the acquisition of wind load and wind-induced responses is of great significance for evaluating the health status of lattice towers. However, wind load is difficult to measure directly, and it is one of the ways to solve this problem to reconstruct them indirectly through easily measured responses. The classical wind load identification method does not consider the influence of rotation, leading to the inaccurate identification results. In this paper, a wind load identification method considering the influence of rotational degrees of freedom is proposed on the premise of known monitoring data. Firstly, the dynamic displacement and modal information are reconstructed from the strain response, and then the Kalman filter algorithm is utilized to calculate the velocity response and modal wind load. Finally, the mass matrix including the influence of rotational degrees of freedom is established, and the wind load of the structure is identified. The numerical simulation of lattice tower verifies that the wind load reconstructed by this method is highly consistent with the theoretical value in both time domain and frequency domain, and the mean value and root mean square error at the highest measuring point are not more than 7%. The 54.5 m-high full-scale tower experiment further shows that the reconstruction error of the proposed method for the actual structure is generally within 10%.

关键词

格构式塔架 / 风荷载 / 简化力学模型 / 卡尔曼滤波 / 足尺试验

引用本文

导出引用
张庆1, 付兴2, 江文强1. 考虑转动自由度影响的格构式塔架风致响应及风荷载识别研究[J]. 振动与冲击, 2024, 43(22): 96-105
ZHANG Qing1, FU Xing2, JIANG Wenqiang1. Wind-induced response and wind load identification of lattice towers considering the influence of rotational degrees of freedom[J]. Journal of Vibration and Shock, 2024, 43(22): 96-105

参考文献

[1] Iungo, G. V. Experimental characterization of wind turbine wakes: Wind tunnel tests and wind LiDAR measurements [J]. Journal of Wind Engineering and Industrial Aerodynamics,2016,149: 35-39.
[2] Zhang, W. T.,Xiao, Y. Q., Li, C., et al. Wind load investigation of self-supported lattice transmission tower based on wind tunnel tests [J]. Engineering Structures, 2022, 252: 113575.
[3] 楼文娟, 胡鹏瑞, 张跃龙. 基于HFFB试验高耸结构风荷载谱高度修正系数及风振分析 [J]. 振动与冲击, 2023, 42: 39-45.
LOU Wen-juan, HU Peng-rui, ZHANG Yue-long. Height correction factor of the wind load spectrum of towering structures based on HFFB tests and wind vibration analysis [J]. Journal of Vibration and Shock, 2023, 42: 39-45.
[4] Ma, G. M., Li, C. R., Jiang, J., et al. A Passive Optical Fiber Anemometer for Wind Speed Measurement on High-Voltage Overhead Transmission Lines [J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(2): 539-544.
[5] 彭桃先. 高层建筑风荷载与结构参数的复合反演 [D]. 南昌: 南昌大学,2020.
PENG Tao-xian, Composite inversion of wind load and structural parameters of high-rise buildings [D]. Nanchang: Nanchang University, 2020.
[6] Ghaderi, P., Dick, A. J., Foley, J. R., et al. Practical high-fidelity frequency-domain force and location identification [J]. Computers & Structures, 2015, 158: 30-41.
[7] 方明新, 杨志勇, 郅伦海. 超高层建筑横风向荷载反演分析 [J]. 振动与冲击, 2015, 34: 35-41.
FANG Ming-xin, YANG Zhi-yong, ZHI Lun-hai. Inverse analysis of across-wind loads on super tall buildings [J]. Journal of Vibration and Shock, 2015, 34: 35-41.
[8] Simonian, S. S. Inverse problems in structural dynamics-Ⅰ. Theory [J]. International Journal for Numerical Methods in Engineering, 1981, 17(3): 357-365.
[9] Simonian, S. S. Inverse problems in structural dynamics-Ⅱ. Applications [J]. International Journal for Numerical Methods in Engineering, 1981, 17(3): 367-386.
[10] Kang, C. C., Lo, C. Y. An inverse vibration analysis of a tower subjected to wind drags on a shaking ground [J]. Applied Mathematical Modelling, 2002 26(4): 517-528.
[11] 陈隽, 李杰. 高层建筑风荷载反演研究 [J]. 力学季刊, 2001, (1): 72-77.
CHEN Jun, LI Jie. Study on wind load inverse of tall building [J]. Chinese Quarterly of Mechanics, 2001, (1): 72-77.
[12] Nagashima, I., Maseki,R., Asami, Y., et al. Performance of hybrid mass damper system applied to a 36-storey high-rise building [J]. Earthquake Engineering & Structural Dynamics, 2001, 30(11): 1615-1637.
[13] Lei, Y., Chen, F., Zhou, H. An algorithm based on two-step Kalman filter for intelligent structural damage detection [J]. Structural Control & Health Monitoring, 2015, 22(4): 694-706.
[14] 杨少冲, 姚远, 张凯, 等. 基于本征正交分解和卡尔曼滤波的结构损伤识别 [J]. 振动与冲击, 2023, 42: 304-312.
YANG Shao-chong, YAO Yuan, ZHANG Kai, et al. Structural damage identification based on proper orthogonal decomposition and Kalman filter [J]. Journal of Vibration and Shock, 2023, 42: 304-312.
[15] 王帅洋, 杨宣访, 胡致远, 等. 基于改进无迹卡尔曼滤波的动力定位系统状态估计 [J]. 船舶工程, 2022, 44(3): 102-109+178.
WANG Shuaiyang, YANG Xuanfang, HU Zhiyuan, et al. State Estimation of the Dynamic Positioning System Based on the Improved Unscented Kalman Filter [J]. Ship Engineering, 2022, 44(3): 102-109+178.
[16] 张笑华, 吴志彪, 吴圣斌, 等. 基于移动窗卡尔曼滤波算法的结构响应重构 [J]. 振动与冲击, 2021, 40(21): 90-96+105.
ZHANG Xiaohua, WU Zhibiao, WU Shengbin, et al. Structural response reconstruction based on moving window Kalman filtering algorithm [J]. Journal of Vibration and Shock, 2021, 40(21): 90-96+105.
[17] Liu, Y. R., Wang. L., Li, M. Kalman filter-random forest-based method of dynamic load identification for structures with interval uncertainties [J]. Structural Control & Health Monitoring, 2022, 29(5): e2935.
[18] Yan, G., Sun, H., Buyukozturk, O. Impact load identification for composite structures using Bayesian regularization and unscented Kalman filter [J]. Structural Control & Health Monitoring, 2017, 24(5): e1910.
[19] Hwang, J. S., Kareem, A. Kim, H. Wind load identification using wind tunnel test data by inverse analysis [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(1): 18-26.
[20] 郅伦海, 余攀. 基于卡尔曼滤波的高层建筑风荷载反演研究 [J]. 武汉理工大学学报, 2016, 38(2): 57-63+81.
ZHI Lun-hai, YU Pan. Research on wind load inversion of high-rise buildings based on Kalman filter [J]. Journal of Wuhan University of Technology, 2016, 38(2): 57-63+81.
[21] Amiri, A. K., Bucher, C. A procedure for in situ wind load reconstruction from structural response only based on field testing data [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 167: 75-86.
[22] 李正农, 郭昌根, 尚扬, 等. 基于实测加速度的高层建筑风荷载反演 [J]. 自然灾害学报, 2017, 26(3): 113-123.
LI Zhengnong, GUO Changgen, SHANG Yang,et al. Wind load inversion of high-rise buildings based on measured acceleration [J]. Journal of Natural Disasters, 2017, 26(3): 113-123.
[23] Niu, Y., Fritzen, C. P., Jung, H., et al. Online simultaneous reconstruction of wind load and structural responses-Theory and application to Canton tower [J]. Computer-Aided Civil and Infrastructure Engineering, 2015, 30(8): 666-681.
[24] 万玮. 基于EKF的风荷载与结构参数复合反演研究 [D]; 哈尔滨: 哈尔滨工业大学, 2016.
WAN Wei. Research on composite inversion of wind load and structural parameters based on EKF[D]. Harbin: Harbin Institute of Technology, 2016.
[25] Zhi, L., Yu, P., Li, Q. S., et al. Identification of wind loads on super-tall buildings by Kalman filter [J]. Computers & Structures, 2018, 208: 105-117.
[26] 张庆, 付兴, 任亮, 等. 格构式塔架结构多源异构监测数据融合及动态位移重构研究 [J]. 振动工程学报, 2023, 36(1): 1-9.
ZHANG Qing, FU Xing, REN Liang, et al. Research on multi-source heterogeneous monitoring data fusion and dynamic displacement reconstruction of lattice tower structure [J]. Journal of Vibration Engineering, 2023, 36(1): 1-9.
[27] Zhang, Q., Fu, X., Ren, L. Deflection estimation of beam structures based on the measured strain mode shape [J]. Smart Materials and Structures, 2021, 30(10): 105003.
[28] HINTON E, ROCK T, ZIENKIEWICZ O C. A note on mass lumping and related processes in the finite element method [J]. Earthquake Engineering & Structural Dynamics, 1976,4(3): 245-249.
[29] DL∕T 5551-2018. 架空输电线路荷载规范 [S]. 北京: 中国计划出版社, 2018.
DL∕T 5551-2018. Load Code for Design of Overhead Transmission Line[S]. China Planning Press, Beijing. 2018

PDF(2206 KB)

116

Accesses

0

Citation

Detail

段落导航
相关文章

/