温黏热效应对圆锥动静压浮环轴承润滑承载特性影响分析

杨帅1, 2, 侯军兴3, 安晓东1, 王晓鹏1, 赵树森1, 张绍林2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 108-118.

PDF(4774 KB)
PDF(4774 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 108-118.
论文

温黏热效应对圆锥动静压浮环轴承润滑承载特性影响分析

  • 杨帅1,2,侯军兴3,安晓东1,王晓鹏1,赵树森1,张绍林2
作者信息 +

Temperature-viscosity thermal effect on lubrication load carrying characteristics for a conical hydrodynamic/hydrostatic floating ring bearing#br#

  • YANG Shuai1,2, HOU Junxing3, AN Xiaodong1, WANG Xiaopeng1, ZHAO Shusen1, ZHANG Shaolin2
Author information +
文章历史 +

摘要

为研究润滑油温黏热效应对圆锥动静压浮环轴承性能的影响,构建内、外膜热流体润滑控制方程组,采用有限元法和有限差分法耦合求解Reynolds方程、能量方程、温黏关系式及浮环平衡方程,结合轴承温度测量实验获得油膜温度场分布特征,分析不同转速、偏心率工况下轴承承载力、摩擦力矩、端泄流量等润滑承载特性的变化规律,揭示温黏热效应对最小油膜厚度的影响。结果表明:油膜温度场不均匀分布现象明显,深腔与进油槽油膜温度较低,封油面附近油温迅速升高;温黏热效应使轴承在高转速下的承载能力下降,端泄流量增加;内外层最小油膜厚度随进油温度的升高而减小,为避免承载力下降引起局部油膜破裂及润滑失效,有必要在轴承设计分析阶段考虑温黏热效应的影响。

Abstract

To study the lubricant temperature-viscosity thermal effect on the conical hydrodynamic/hydrostatic float-ing ring bearing performance, the thermohydrodynamic lubrication governing equations were established, the Finite Element Method and Finite Difference Method were used to solve Reynolds equation, energy equation, temperature-viscosity equation and floating ring equilibrium equation simultaneously, and oil film temperature distribution was described from the bearing temperature measuring experiment further. The variation regular of lubrication bearing characteristics including load carrying capacity, friction moment and side leakage flow were analyzed, the influence of temperature-viscosity thermal effect on the minimum film thickness was revealed. The results show that there exists a non-uniform temperature distribution, the film temperature is lower relatively in the deep pocket, and it climbs rapidly near the bearing land. Thermal ef-fect decreases the load carrying capacity, whereas increases the side leakage flow at high speed. Inner and outer minimum film thickness drop with the increase of inlet temperature, to avoid oil film rupture and even lubrication failure caused by load carrying capacity decline, it is essential to consider the influence of temperature-viscosity thermal effect at the stage of bearing design and analysis.

关键词

温黏热效应 / 圆锥浮环轴承 / 温度场分布 / 承载性能 / 最小油膜厚度

Key words

temperature-viscosity thermal effect / conical floating ring bearing / temperature distribution / load carrying performance / mini-mum oil film thickness

引用本文

导出引用
杨帅1, 2, 侯军兴3, 安晓东1, 王晓鹏1, 赵树森1, 张绍林2. 温黏热效应对圆锥动静压浮环轴承润滑承载特性影响分析[J]. 振动与冲击, 2024, 43(23): 108-118
YANG Shuai1, 2, HOU Junxing3, AN Xiaodong1, WANG Xiaopeng1, ZHAO Shusen1, ZHANG Shaolin2. Temperature-viscosity thermal effect on lubrication load carrying characteristics for a conical hydrodynamic/hydrostatic floating ring bearing#br#[J]. Journal of Vibration and Shock, 2024, 43(23): 108-118

参考文献

[1] 贾谦, 林铿, 杨帅等. 结构和工况参数对电主轴动静压轴承性能的影响[J]. 航空动力学报, 2023, 38(5): 1270-1280.
JIA Qian, LIN Keng, YANG Shuai, et al. Influence of structure and working condition parameters on performance of motorized spindle’s hybrid bearings[J]. Journal of Aerospace Power, 2023, 38(5): 1270-1280.
[2] 朱嘉兴, 李华聪, 符江锋等. 航空燃油齿轮泵滑动轴承非线性瞬态性能数值分析[J]. 推进技术, 2020, 41(2): 412-422.
ZHU Jiaxing, LI Huacong, FU Jiangfeng, et al. Numerical analysis of non-linear transient characteristics of aviation fuel gear pump sliding bearings[J]. Journal of Propulsion Technology, 2020, 41(2): 412-422.
[3] Gangrade A K, Phalle V M, Mantha S S. Performance analysis of a conical hydrodynamic journal bearing[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2019, 43(3): 559-573.
[4] Zuo X, Wang J, Yin Z, Li S. Comparative performance analysis of conical hydrostatic bearings compensated by variable slot and fixed slot[J]. Tribology International, 2013, 66: 83-92.
[5] Khakse P G, Phalle V M, Mantha S S. Orifice compensated performance characteristics of hybrid hole-entry conical journal bearing[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2017, 231(3): 316-331.
[6] Khakse P G, Phalle V M, Mantha S S. Performance analysis of a nonrecessed hybrid conical journal bearing compensated with capillary restrictors[J]. Journal of Tribology, 2016, 138(1): 011703.
[7] 李胜波, 敖宏瑞, 姜洪源等. 深腔圆锥动静压混合轴承润滑特性[J]. 哈尔滨工业大学学报, 2013, 45(1): 60-66.
LI Shengbo, AO Hongrui, JIANG Hongyuan, et al. Lubrication characteristics of deep cavity hybrid conical bearing[J]. Journal of Harbin Institute of Technology, 2013, 45(1): 60-66.
[8] Sharma S C, Kumar A. On the behaviour of roughened conical hybrid journal bearing system operating with MR lubricant[J]. Tribology International, 2021, 156: 106824.
[9] 郭红, 武宁宁, 杨帅等. 热效应对高速圆锥动静压轴承静特性的影响[J]. 润滑与密封, 2020, 45(06): 15-21.
GUO Hong, WU Ningning, YANG Shuai, et al. Influence of thermal effect on static characteristics of high-speed conical hybrid bearing[J]. Lubrication Engineering, 2020, 45(6): 15-21.
[10] 于晓东, 黄殿彬, 韩飞等. 极端工况静压支承转速与承载力的耦合与协同[J]. 哈尔滨工程大学学报, 2022, 43(10): 1499-1506.
YU Xiaodong, HUANG Dianbin, HAN Fei, et al. Coupling and collaboration of rotational speed and load capacity of hydrostatic bearing under extreme working conditions[J]. Journal of Harbin Engineering University, 2022, 43(10): 1499-1506.
[11] Su C, Chen W. Thermal behavior on motorized spindle considering bearing thermal deformation under oil-air lubrication[J]. Journal of Manufacturing Processes, 2021, 72: 483-499.
[12] 张艳芹, 冯雅楠, 罗义等. 静压推力轴承各工况下的热油携带及油膜温升特性[J]. 推进技术, 2022, 43(5): 259-268.
ZHANG Yanqin, FENG Yanan, LUO Yi, et al. Hot oil carrying and oil film temperature rise characteristics of hydrostatic thrust bearings under various operating conditions[J]. Journal of Propulsion Technology, 2022, 43(5): 259-268.
[13] 郑良焱, 朱汉华, 范世东等. 计入应力偶效应的滑动轴承热流体混合润滑研究[J]. 机械工程学报, 2023, 59(10): 290-300.
ZHENG Liangyan, ZHU Hanhua, FAN Shidong, et al. Mixed thermo-hydrodynamic analysis of journal bearings with couple stress lubricants[J]. Journal of Mechanical Engineering, 2023, 59(10): 290-300.
[14] 刘金杰, 杨萍, 马子魁等. 供油温度对润滑状态影响的试验观察与数值模拟[J/OL]. 摩擦学学报: 1-16[2023-12-13]. https://doi.org/10.16078/j.tribology.2022220.
LIU Jinjie, YANG Ping, MA Zikui, et al. Experimental and numerical observation of oil-feeding temperature on lubrication states[J/OL]. Tribology: 1-16[2023-12-13]. https://doi.org/10.16078/j.tribology.2022220.
[15] Xie Z, Zhu W. An investigation on the lubrication characteristics of floating ring bearing with consideration of multi coupling factors[J]. Mechanical Systems and Signal Processing, 2022, 162: 108086.
[16] 巫立民, 李梅, 李丽婷等. 柴油机配气滚轮浮环轴承润滑特性优化研究[J]. 内燃机工程, 2020, 41(6): 127-134.
WU Limin, LI Mei, LI Liting, et al. Optimization research on the lubrication characteristics of roller floating ring bearing of diesel engine vavle train[J]. Chinese Internal Combustion Engines, 2020 41(6): 127-134.
[17] Kim S, Palazzolo A. Effects of thermo hydrodynamic (THD) floating ring bearing model on rotordynamic bifurcation[J]. International Journal of Non Linear Mechanics, 2017, 95: 30-41.
[18] Yang S, Guo H, Zhang B, et al. Thermohydrodynamic characteristics and stability analysis for a journal hybrid floating ring bearing within laminar and turbulent mixed flow regime[J]. Journal of Tribology, 2021, 143(3): 031801.
[19] 温诗铸, 黄平, 田煜等. 摩擦学原理: 第五版[M]. 北京: 清华大学出版社, 2018.
[20] Sinha P, Chandra P, Bhartiya S S. Thermal effects in externally pressurized porous conical bearings with variable viscosity[J]. Acta mechanica, 2001, 149: 215-227.
[21] 王家序, 倪小康, 韩彦峰等. 倾斜轴颈滑动轴承混合热弹流研究[J]. 中南大学学报(自然科学版), 2019, 50(10): 2425-2434.
WANG Jiaxu, NI Xiaokang, HAN Yanfeng, et al. Mixed thermoelastohydrodynamic lubrication investigation of misaligned journal bearings[J]. Journal of Central South University (Science and Technology), 2019, 50(10): 2425-2434. (in Chinese)
[22] GUO H,  LAI X M  CEN S Q. Theoretical and experimental study on dynamic coefficients and stability for a hydrostatic/hydrodynamic conical bearing[J]. Journal of Tribology, 2009, 131(4): 41701.
[23] 顾灿松, 袁兆成, 刘佳鑫等. 涡轮增压器动力学建模及振动特性研究[J]. 振动与冲击, 2019, 38(23): 70-76+102.
GU Cansong, YUAN Zhaocheng, LIU Jiaxin, et al. Dynamic modeling for a turbocharger and its vibration characteristics[J]. Journal of Vibration And Shock, 2019, 38(23): 70-76+102.
[24] 陶文铨. 数值传热学: 第二版[M]. 西安: 西安交通大学出版社, 2001

PDF(4774 KB)

99

Accesses

0

Citation

Detail

段落导航
相关文章

/