挤压膜气体轴承因其稳定性好、工作模式多样等优点在高速旋转机械中具有广泛的应用前景。高频振动下其结构振型与润滑气膜的耦合是典型的流固耦合问题,为研究挤压膜气体轴承润滑承载特性,基于挤压效应原理提出了一种新型挤压膜气体推力轴承。采用有限元法求解轴承结构振型,并以流体润滑理论为基础,建立了耦合轴承结构振型的悬浮承载特性分析模型,分析了轴承结构、驱动电压等参数对挤压悬浮特性的影响规律。结果表明:挤压膜气体轴承气膜压力呈周期性变化,周期内大于环境压力的平均气压提供了悬浮力,且悬浮力随驱动电压的增加而增大,理论与实验结果相吻合,验证了悬浮承载模型的正确性。该研究能够进一步丰富气体推力轴承理论模型。
Abstract
Squeezed film gas bearings have a wide range of applications in high-speed rotating machinery due to their advantages of good stability and various operating modes. Under high frequency vibration, the coupling between its structural vibration and lubrication gas film is a typical fluid-solid coupling problem, in order to study the lubrication Load-carrying capacity of extruded film gas bearings, a new type of squeezed film gas thrust bearing is proposed based on the principle of Squeeze effect. The finite element method is used to solve the vibration pattern of the bearing structure, and based on the fluid lubrication theory, an analytical model of the levitation Load-carrying capacity of the coupled bearing structure vibration pattern is established, and the influence laws of the bearing structure, driving voltage and other parameters on the levitation characteristics of the extrusion are analysed. The results show that the gas film pressure of the squeezed film gas bearing changes periodically, and the average gas pressure larger than the ambient pressure during the cycle provides the levitation force, and the levitation force increases with the increase of the driving voltage, and the theoretical and experimental results coincide with each other, which verifies the correctness of the levitation bearing model. This study can further enrich the theoretical model of gas thrust bearing.
关键词
挤压效应 /
承载特性 /
气体轴承 /
气膜压力 /
悬浮力
{{custom_keyword}} /
Key words
Squeeze effect /
Load-carrying capacity /
Gas bearing /
Gas film pressure /
Levitation force
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李云龙,董志强.不同构型的螺旋槽底动压气体止推轴承性能的比较分析研究[J]. 振动与冲击, 2022,41(19):172-178.
LI Yunlong,DONG Zhiqiang.Comparative analytical study on the performance of dynamic gas thrust bearings with different configurations at the bottom of spiral groove[J].Journal of Vibration and Shock, 2022,41(19):172-178.
[2] Zhao S, Mojrzisch S, Wallaschek J. An ultrasonic levitation journal bearing able to control spindle center position[J]. Mechanical systems and signal processing, 2013,36(1):168-181.
[3] 吴垚,郗文君,毕春晓,等.微型多叶稀薄气体润滑动压轴承动态特性研究[J].振动与冲击,2023,42(21):88-100.
Wu Yao, Xi Wenjun, Bi Chunxiao,et al. Dynamic character-ization of miniature multileaf thin gas lubricated dynamic pressure bearings[J].Journal of Vibration and Shock, 2023,42(21):88-100.
[4] 安磊,王伟,龚维纬.不同润滑介质下气体静压轴承气锤自激振动研究[J] .振动与冲击,2023,42(04):185-193.
An Lei, Wang Wei, Gong Weiwei. Research on self-excited vibration of air hammer of gas hydrostatic bearing under different lubricating media[J] . Journal of Vibration and Shock, 2023,42(04):185-193.
[5] Shi M, Liu X, Feng K, et al. Experimental and numerical investigation of a self-adapting non-contact ultrasonic motor[J]. Tribology International, 2021,153:106624.
[6] 石明辉,郭红,张绍林等.混合型挤压膜气体轴承承载特性分析[J].轴承,2022,(10):86-92.
SHI Minghui,GUO Hong,ZHANG Shaolin,et al. Analysis of load carrying characteristics of hybrid extruded film gas bearings[J]. Bearing,2022,(10):86-92.
[7] Whymark R R. Acoustic field positioning for containerless processing. Ultrasonics, 1975. 13(6): p. 251-261.
[8] CHU B T, APFEL R E. Acoustic radiation pressure produced by a beam of sound[J]. The Journal of the Acoustical Society of America,1981. 69(S1): p. S80.
[9] Nomura H , T Kamakura and K Matsuda, Theoretical and experimental examination of near-field acoustic levitation[J]. The Journal of the Acoustical Society of America,2002. 111 4: p. 1578-83.
[10] Minikes A, Bucher I. Noncontacting lateral transportation using gas squeeze film generated by flexural traveling waves-numerical analysis[J]. Journal of the Acoustical Society of America, 2003. 113(5): p. 2464.
[11] Minikes A, Bucher I.Comparing numerical and analytical solutions for squeeze-film levitation force[J]. Journal of Fluids & Structures, 2006. 22(5): p. 713-719.
[12] Wallaschek J, Zhao S. A standing wave acoustic levitation system for large planar objects[J]. Archive of Applied Mechanics, 2011. 81(2): p. 123-139.
[13] 马希直,胡伟,王挺.超声挤压膜动特性系数及影响因素研究[J].中国机械工程,2014,25(08):1113-1117.
MA Xizhi, HU Wei, WANG Ting. Research on dynamic characteristic coefficients and influencing factors of ultra-sonic extruded membrane[J]. China Mechanical Engineer-ing,2014,25(08):1113-1117.
[14] 马希直,王胜光,王挺.近场超声悬浮承载能力及影响因素的理论及实验研究[J].中国机械工程,2013,24(20):2785-2790.
MA Xizhi, WANG Shengguang, WANG Ting. Theoreti cal and experimental study of near-field ultrasonic levitation bearing capacity and influencing factors[J]. China Mechan-ical Engineering,2013,24(20):2785-2790.
[15] 朱达云.超声激励的气体挤压膜直线导轨及其控制器的研究[D].南京航空航天大学,2012.
Zhu Dayun. Research on ultrasonically excited gas ex truded membrane linear guide and its controller[D]. Nanjing University of Aeronautics and Astronautics,2012.
[16] Zhao U, Mojrzisch S, Wallaschek J. An ultrasonic levitation journal bearing able to control spindle center position[J]. Mechanical Systems and Signal Processing, 2013. 36(1): p. 168–181.
[17] 王洪臣,杨利,杨志刚等.超声振动承载气膜对电机转子悬浮支承与减摩的研究[J].润滑与密封,2015,40(12):66-70+130.
WANG Hongchen,YANG Li,YANG Zhigang,et al. Re search on suspension support and friction reduction of motor rotor by ultrasonic vibration bearing air film[J]. Lubrication Engineering,2015,40(12):66-70+130.
[18] 王洪臣,杨志刚,刘磊等.基于轴向支撑超声波悬浮高速电机的研究[J].压电与声光,2015,37(05):833-837+843.
WANG Hongchen, YANG Zhigang, LIU Lei et al. Re search on high-speed motor based on axially supported ul-trasonic levitation[J]. Piezoelectrics and Acoustoop-tics,2015,37(05):833-837+843.
[19] 贾颖,李东明,赵玉龙等.压电驱动的超声悬浮精密轴承静动态承载特性[J].光学精密工程,2019,27(05):1103-1109.
JIA Ying, LI Dongming, ZHAO Yulong et al. Static and dynamic load carrying characteristics of piezoelectric-driven ultrasonically levitated precision bearings[J]. Optics and Precision Engineering,2019,27(05):1103-1109.
[20] 石明辉.基于近场声悬浮的非接触式轴承和超声马达理论分析与实验研究[D].湖南大学,2020.
SHI Minghui. Theoretical analysis and experimental research on non-contact bearing and ultrasonic motor based on near-field acoustic levitation[D]. Hunan University,2020.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}