基于FAHP-TOPSIS法的一体化前舱盖轻量化设计

李书华1, 2, 贝璟1, 2, 吴姚烨1, 2, 蒋泽龙1, 2, 张代胜1, 2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 125-133.

PDF(2753 KB)
PDF(2753 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 125-133.
论文

基于FAHP-TOPSIS法的一体化前舱盖轻量化设计

  • 李书华1,2,贝璟1,2,吴姚烨1,2,蒋泽龙1,2,张代胜1,2
作者信息 +

Lightweight design of integrated engine hood based on FAHP-TOPSIS method

  • LI Shuhua1,2, BEI Jing1,2, WU Yaoye1,2, JIANG Zelong1,2, ZHANG Daisheng1,2
Author information +
文章历史 +

摘要

 为保证汽车行车安全,前舱盖需满足刚度、模态和行人保护等要求。针对汽车前舱盖的轻量化设计需求,建立了铸铝一体化前舱盖有限元模型,分析了前舱盖的刚度、模态和行人保护性能,构建了RBF-Kriging混合近似模型并联合存档微遗传算法(Archive based micro genetic algorithm, AMGA)对前舱盖进行多目标优化。针对多目标优化产生的Pareto解集,提出一种基于模糊层次分析-逼近理想解排序(Fuzzy analytic hierarchy process-Technique for Order Preference by Similarity to Ideal Solution, FAHP-TOPSIS)法对Pareto非劣解进行综合性能排名,主客观相结合地选择出最优方案。结果表明,在满足性能要求的前提下,最优一体化前舱盖质量降低了32.14%,轻量化效果显著。

Abstract

In order to ensure the safety of automobile driving, the hood needs to meet the requirements of stiffness, modal and pedestrian protection. Aiming at the lightweight design requirements of automobile hood, a finite element model of cast aluminum integrated hood was established to analyze the stiffness, modal and pedestrian protection performance of the hood, and a hybrid RBF-Kriging approximation model was constructed and combined with the AMGA algorithm to perform multi-objective optimization of the hood. Aiming at the Pareto solution set generated by multi-objective optimization, a FAHP-TOPSIS method was proposed to comprehensively evaluate the Pareto non-dominated solution set. Pareto non-dominated solutions were ranked in terms of comprehensive performance, and the optimal solution was selected by combining subjectivity and objectivity. The results show that under the premise of meeting the performance requirements, the mass of the optimal integrated hood is reduced by 32.14%, and the lightweighting effect is remarkable.

关键词

一体化前舱盖 / 熔模铸造 / 存档微遗传算法(AMGA) / 模糊层次分析-逼近理想解排序(FAHP-TOPSIS) / Pareto非劣解 / 轻量化

Key words

integrated hood / investment casting / archive based micro genetic algorithm(AMGA) / fuzzy analytic hierarchy process-technique for order preference by similarity to ideal solution(FAHP-TOPSIS) / Pareto non-dominated solutions / lightweight

引用本文

导出引用
李书华1, 2, 贝璟1, 2, 吴姚烨1, 2, 蒋泽龙1, 2, 张代胜1, 2. 基于FAHP-TOPSIS法的一体化前舱盖轻量化设计[J]. 振动与冲击, 2024, 43(23): 125-133
LI Shuhua1, 2, BEI Jing1, 2, WU Yaoye1, 2, JIANG Zelong1, 2, ZHANG Daisheng1, 2. Lightweight design of integrated engine hood based on FAHP-TOPSIS method[J]. Journal of Vibration and Shock, 2024, 43(23): 125-133

参考文献

[1] 孙晓旺,曾爱,王显会,等. 车辆侧爆防护可靠性优化设计研究[J]. 振动与冲击,2021,40( 17) : 137-145.
SUN Xiaowang, ZENG Ai, WANG Xianhui, et al. Optimized design of vehicle side blast protection reliability[J]. Vibration and Shock, 2021, 40( 17) : 137-145.
[2] 李书华,吴宗扬,吴钇陶,等. 一体化铸铝防撞梁的多目标可靠性优化设计[J]. 重庆理工大学学报(自然科学),2022,36( 12) : 18-25.
LI Shuhua, WU Zongyang, WU Yitao, et al. Multi-objective reliability optimization design of an integrated cast aluminum crash beam[J]. Journal of Chongqing University of Technology (Natural Sciences), 2022, 36( 12) : 18-25.
[3] Wang D, Xie C, Wang Y. Multi-objective lightweight and crashworthiness collaborative optimisation of commercial vehicle cab[J]. International journal of crashworthiness, 2022, 27( 4) : 1017-1031.
[4] Wang D, Xie C. An efficient hybrid sequential approximate optimization method for problems with computationally expensive objective and constraints[J]. Engineering with Computers, 2022, 38( 1): 727-738.
[5] 邹喜红,苟林林,傅雷,等. 基于实测载荷谱的某全域车悬架下控制臂疲劳寿命研究[J]. 兵器装备工程学报,2022,43( 07) : 301-308.
Zou Xihong, Gou Linlin, Fu Lei et al. Fatigue life study of lower control arm of a full range vehicle suspension based on measured load spectrum[J]. Journal of Weapons and Equipment Engineering, 2022, 43( 07): 301-308.
[6] Zhao Y, Zhang Q, Li Y, et al. Theoretical, emulation and experimental analysis on auxetic re-entrant octagonal honeycombs and its applications on pedestrian protection of engine hood[J]. Composite Structures, 2021, 260: 113534.
[7] Ngo V L, Khong M. The Effect of Bonnet Skin and Bonnet Reinforcement Thickness on Pedestrian Head Injuries in Collisions[C]. Advances in Engineering Research and Application: Proceedings of the International Conference on Engineering Research and Applications, ICERA 2020. Springer International Publishing, 2021: 792-797.
[8] 杨鄂川,黄路,庞通,等. 铝制多胞吸能盒多目标优化设计[J]. 机械强度,2021,43( 04) : 834-840.
YANG Echuan, HUANG Lu, PANG Tong, et al. Multi-objective optimization design of aluminum multi-cell energy-absorbing box[J]. Mechanical Strength, 2021, 43( 04): 834-840.
[9] Tiwari S, Koch P, Fadel G, et al. AMGA: an archive-based micro genetic algorithm for multi-objective optimization[C]. Proceedings of the 10th annual conference on Genetic and evolutionary computation. 2008: 729-736.
[10] 蒋荣超,张涛,孙海霞,等. 基于熵权TOPSIS法的CFRP防撞梁轻量化研究[J]. 汽车工程,2021,43( 03) : 421-428.
JIANG Rongchao, ZHANG Tao, SUN Haixia, et al. Research on lightweighting of CFRP crash beam based on entropy weight TOPSIS method[J]. Automotive Engineering, 2021, 43( 03): 421-428.
[11] 黄胜超,廖耀青,单志颖,等. 基于多目标优化的乘用车后排座椅轻量化设计[J]. 汽车零部件,2021( 03) : 28-36. 
HUANG Shengchao, LIAO Yaoqing, SHAN Zhiying, et al. Lightweight design of rear seats in passenger cars based on multi-objective optimization[J]. Automotive Components, 2021( 03) : 28-36.
[12] 俞宁,蒋靖,陈佳佳. 基于FAHP-FQFD方法的汽车产品性能量化评价的研究[J]. 汽车工程,2020,42( 01) : 134-139.
YU Ning, JIANG Jing, CHEN Jiajia. Research on quantitative evaluation of automotive product performance based on FAHP-FQFD method[J]. Automotive Engineering, 2020, 42( 01) : 134-139.
[13] 蔡祺祥,翟胡萍,王炜,等. 基于层次分析法的多因素模糊综合评价方法在专利转化中的应用[J]. 南京理工大学学报,2018,42( 04) : 497-502.
CAI Qixiang, ZHAI Huping, WANG Wei, et al. Application of multi-factor fuzzy comprehensive evaluation method based on hierarchical analysis method in patent transformation[J]. Journal of Nanjing University of Science and Technology, 2018, 42( 04): 497-502.
[14] Li C, Negnevitsky M, Wang X. Prospective assessment of methanol vehicles in China using FANP-SWOT analysis[J]. Transport Policy, 2020, 96: 60-75.
[15] 李素英,田崖,吴永立. 基于FAHP模型的铁路工程项目风险评估研究[J]. 铁道工程学报,2019,36( 07) : 92-99. 
LI Suying., TIAN Ya, WU Yongli. Research on risk assessment of railroad engineering projects based on FAHP model[J]. Journal of Railway Engineering, 2019, 36( 07) : 92-99.
[16] 陈仁朋,王志腾,吴怀娜,等. 基于FAHP法和区间数改进TOPSIS法的盾构隧道下穿建筑物风险评估[J]. 上海交通大学学报,2022,56( 12) : 1710-1719. 
CHEN Renpeng, WANG Zhiteng, WU Huaina, et al. Risk assessment of shield tunnel underpassing buildings based on FAHP method and interval number improvement TOPSIS method[J]. Journal of Shanghai Jiaotong University, 2022, 56( 12): 1710-1719.
[17] Wang D, Jiang R, Wu Y. A hybrid method of modified NSGA-II and TOPSIS for lightweight design of parameterized passenger car sub-frame[J]. Journal of Mechanical Science and Technology, 2016, 30: 4909-4917.

PDF(2753 KB)

Accesses

Citation

Detail

段落导航
相关文章

/