基于改进天鹰优化算法优化LSTM的滚动轴承故障诊断方法

王妍1, 王新发1, 王延峰1, 顾晓光2, 孙军伟1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 144-154.

PDF(3876 KB)
PDF(3876 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 144-154.
论文

基于改进天鹰优化算法优化LSTM的滚动轴承故障诊断方法

  • 王妍1,王新发1,王延峰1,顾晓光2,孙军伟1
作者信息 +

A rolling bearing fault diagnosis method based on improved Aquila optimization algorithm to optimize LSTM

  • WANG Yan1, WANG Xinfa1, WANG Yanfeng1, GU Xiaoguang2, SUN Junwei1
Author information +
文章历史 +

摘要

针对天鹰优化(Aquila optimizer,AO)算法容易陷入局部最优,长短时记忆(long short-term memory,LSTM)神经网络容易受参数影响的问题,提出了一种基于改进天鹰(Improved AO,IAO)算法优化LSTM神经网络的模型,并将其应用于滚动轴承的故障诊断中。首先,引入超立方策略优化了种群初始质量,设计自适应螺旋策略平衡了AO算法的全局搜索和局部搜索能力,并通过利用高斯变异策略增强了AO算法跳出局部最优的能力。然后,将所提IAO算法对LSTM的权值和阈值进行优化,构建了基于IAO-LSTM网络的滚动轴承故障诊断模型。最后,凯斯西储大学(Case Western Reserve University,CWRU)轴承数据集和帕德伯恩大学(Paderborn University,PU)轴承数据集的实验结果表明:与其他故障诊断模型相比,IAO优化后的LSTM模型的分类准确率更高,能有效识别滚动轴承的各种故障类型。

Abstract

Aiming at the problem that Aquila optimizer (AO) is prone to local optimization and the accuracy of long short-term memory (LSTM) network is affected by parameters, a model of LSTM neural network based on improved Aquila optimizer (IAO) algorithm is proposed and applied to the fault diagnosis of rolling bearings. Firstly, the hypercube strategy is introduced to optimize the initial mass of the population, and the adaptive spiral strategy is designed to balance the global search ability and local search ability of AO algorithm, and the ability of AO algorithm to jump out of the local optimal is enhanced by using Gaussian mutation strategy. Then, the weights and thresholds of LSTM are optimized by the proposed IAO algorithm, and a rolling bearing fault diagnosis model based on IAO-LSTM network is constructed. Finally, the experimental results of Case Western Reserve University (CWRU) bearing data set and Paderborn University (PU) bearing data set show that compared with other fault diagnosis models, the IAO-optimized LSTM model has higher classification accuracy and can effectively identify various fault types of rolling bearings.

关键词

故障诊断 / 天鹰优化算法 / 自适应螺旋搜索 / 超立方体策略 / LSTM神经网络

Key words

fault diagnosis / Aquila optimizer algorithm / adaptive spiral search / hypercube strategy / LSTM neural network;

引用本文

导出引用
王妍1, 王新发1, 王延峰1, 顾晓光2, 孙军伟1. 基于改进天鹰优化算法优化LSTM的滚动轴承故障诊断方法[J]. 振动与冲击, 2024, 43(23): 144-154
WANG Yan1, WANG Xinfa1, WANG Yanfeng1, GU Xiaoguang2, SUN Junwei1. A rolling bearing fault diagnosis method based on improved Aquila optimization algorithm to optimize LSTM[J]. Journal of Vibration and Shock, 2024, 43(23): 144-154

参考文献

[1] Yan X A, Jia M P, Zhang W, et al. Fault diagnosis of rolling element bearing using a new optimal scale morphology analysis method [J]. ISA Trans. 2018, 73:165–180.
[2] 边旭,田璧菀,靳世久.基于机器学习的在轨航天器泄漏源实时定位方法研究[J].振动与冲击,2023,42(15):319-324.
BIAN Xu, TIAN Bi-wan, JIN Shi-jiu. Research on real-time location method of leakage source for in-orbit spacecraft based on Machine Learning [J]. Journal of Vibration and Shock,2023,42(15):319-324.
[3] Yang Y G, Nie W F. Earth orientation parameters prediction based on the hybrid SSA + LS SVM model [J]. Measurement Science and Technology. 2022,33:1-15.
[4] Ping W, Hu G H, et al. Blob properties in I-mode and ELM-free H-mode compared to L-mode on EAST [J]. Plasma Science and Technology. 2023; 25:60-69.
[5] Wang S H, Xiang J W, Zhong Y T, et al. A data indicator-based deep belief networks to detect multiple faults in axial piston pumps [J]. Mech Syst Signal Process.2018,112:154–170.
[6] 李昕燃,靳伍银.基于改进麻雀算法优化支持向量机的滚动轴承故障诊断研究[J].振动与冲击,2023,42(06):106-114. 
LI Xin-ran, JIN Wu-yin. Research on rolling bearing Fault Diagnosis Based on Improved Sparrow Algorithm and Optimized support Vector Machine [J]. Journal of Vibration and Shock, 2019,42(06):106-114.
[7] Noh S H. Analysis of gradient vanishing of RNNs and performance comparison [J]. Information. 2021,12:1-11.
[8] 王继选,胡润志,管一等.基于RFOA优化GRNN的水电机组振动预测[J].振动与冲击,2021,40(21):120-126
WANG Ji-xuan, HU Run-zhi, GUAN Yi, et al. Vibration prediction of hydropower unit based on RFOA-GRNN [J]. Journal of Vibration and Shock, 2021,40(21):120-126.
[9] An Y Y, Zhang K. Rolling bearing fault diagnosis method base on periodic sparse attention and LSTM [J]. IEEE Sensors Journal. 2022,22:12044-12053.
[10] Zou P, Hou B C. Bearing fault diagnosis method based on EEMD and LSTM [J]. International Journal Of Computers Communications. 2020,15:1-14.
[11] Gu K, Zhang Y. DWT-LSTM-based fault diagnosis of rolling bearings with multi-sensors [J]. Electronics. 2021,10:1-13.
[12] Zheng J B, Liao J. End-to-end continuous / discontinuous feature fusion method with attention for rolling bearing fault diagnosis [J]. Sensors. 2022, 22:1-16.
[13] Seyedzadeh S, Rahimian F P, Rastogi P. Tuning machine learning models for prediction of building energy loads [J]. Sustain Cities Soc. 2019, 47:1-18.
[14] 杨海明. 基于改进天鹰算法的ENN神经网络模型优化压力容器参数研究[D].太原科技大学,2024.
YANG Hai-ming. Research on optimization of pressure vessel parameters by ENN neural network model based on improved Tianying algorithm [D]. Taiyuan University of Science and Technology,2024.
[15] 张健忠. 基于改进天鹰优化算法结合LSTM的混凝投药预测研究[D].昆明理工大学,2023.
ZHANG Jian-zhong. Prediction of coagulant administration based on improved Tianying optimization algorithm combined with LSTM [D]. Kunming University of Science and Technology,2023.
[16] Abualigah L, Yousri D, Elaziz M A, et al. Matlab code of Aquila optimizer: a novel meta-heuristic optimization algorithm [J]. Computers Industrial Engineering. 2021; 157:1-37.
[17] 张金,陈克坚,曾永平等.基于改进拉丁超立方抽样的高墩铁路桥梁地震可靠度分析方法[J].铁道学报,2024,1:1-11.
ZHANG Jin, CHEN Ke-jian, ZENG Yong-ping et al. Seismic reliability Analysis method for high-pier railway Bridges based on improved Latin Hypercube sampling [J]. Journal of Railways,2024,1:1-11.
[18] Li M, Xu G, Fu Y, et al. Improved whale optimization algorithm based on variable spiral position update strategy and adaptive inertia weight[J]. Journal of Intelligent & Fuzzy Systems, 2022, 42(3): 1501-1517.
[19] 郑直,张华钦,潘月.基于改进鲸鱼算法优化LSTM的滚动轴承故障诊断[J].振动与冲击,2021,40(07):274-280.
ZHENG Zhi, ZHANG Hua-qin, Pan Yue. Fault Diagnosis of Rolling Bearings Based on Improved Whale Algorithm for LSTM Optimization [J]. Journal of Vibration and Shock,2021,40(07):274-280.
[20] Jamil M, Yang X S, Zepernick H J. Test functions for global optimization: a comprehensive survey [J]. Swarm Intelligence and Bio-Inspired Computation. 2013, 8:193–222.
[21] 陈卓,田洋阳,马田田等.基于天鹰优化器(AO)算法的气田管网布局优化[J].当代化工,2022,51(12):2898-2902.
CHEN Zhuo, TIAN Yang-yang MA Tian-tian, et al. Gas field pipe network layout optimization based on Tian ying Optimizer (AO) algorithm [J]. Contemporary chemical industry. 2022,12:1-7.
[22] 李雅梅,孟嗣博,陈雪莲.多策略改进的天鹰优化算法及其应用[J].计算机应用研究,2023,40(05):1352-1359.
Li Ya-mei, MENG Si-bo, CHEN Xue-lian. Improved Aquila 
multi-strategy optimization algorithm and its application [J]. 
Computer application research. 2023; 2:1352-1359. 
[23] 李红月,高英杰,朱文昌.IAO优化SVM的电机滚动轴承故障诊断[J].电子测量技术,2022,45(10):126-132.
LI Hong-yue, GAO Ying-jie, Zhu Wen-chang . IAO optimization of rolling bearing fault diagnosis of the SVM [J]. Journal of electronic measurement technology. 2022; 10: 126-132.
[24] 刘福康,杨光永,王林等.基于IAO-MCKD的电机轴承故障诊断[J].组合机床与自动化加工技术,2022,(08):71-74.
LIU Fu-kang, Yang Guang-yong, Wang Lin. Fault Diagnosis of Motor Bearing Based on IAO-MCKD [J]. Modular Machine Tool & Automatic Manufacturing Technology. 2022; 8:71-74.
[25] Avci C, Tekinerdogan B, Catal C. Analyzing the performance of long short-term memory architectures for malware detection models [J]. Concurrency And Computation-Practice. 2023,35:1-15.
[26] Ma J, Wang X. Compound fault diagnosis of rolling bearing based on ACMD, Gini index fusion and AO-LSTM[J]. Symmetry, 2021, 13: 2386.
[27] Sun H, Cao X, Wang C, et al. An interpretable anti-noise network for rolling bearing fault diagnosis based on FSWT[J]. Measurement, 2022, 190: 1-15.

PDF(3876 KB)

172

Accesses

0

Citation

Detail

段落导航
相关文章

/